

Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2009

Total Synthesis and Biological Evaluation of the Cytotoxic Resin Glycosides Ipomoeassin A-F and Analogues

Takashi Nagano,^[a] Jiři Pospíšil,^[a] Guillaume Chollet,^[a] Saskia Schulthoff,^[a] Volker Hickmann,^[a] Emilie Moulin,^[a] Jennifer Herrmann,^[b] Rolf Müller,^[b] and Alois Fürstner^{*[a]}

[a] Max-Planck-Institut für Kohlenforschung
45470 Mülheim/Ruhr (Germany)
E-mail: fuerstner@mpi-muelheim.mpg.de

[b] Saarland University Department of Pharmaceutical Biotechnology 66041 Saarbrücken (Germany)

Experimental Section

General: All reactions were carried out under Ar in flame-dried glassware. The solvents used were purified by distillation over the drying agents indicated and were transferred under Ar: THF, Et₂O (Mg/anthracene), CH₂Cl₂, Et₃N, CH₃CN, DMSO, (CaH₂), pentane, hexane, toluene (Na/K), DMF (Desmodur 15, dibutyl tin dilaurat), MeOH, EtOH (Mg). Flash chromatography (FC): Merck silica gel 60 (230-400 mesh). NMR: Spectra were recorded on Bruker DPX 300, AMX 300, AV 400, DPX 600 and AVIII 600 spectrometer in the solvents indicated; chemical shifts (δ) are given in ppm relative to TMS, coupling constants (J) in Hz. The solvent signals were used as references and the chemical shifts converted to the TMS scale (CDCl₃: $\delta_C \equiv 77.0$ ppm; residual CHCl₃ in CDCl₃: $\delta_H \equiv 7.26$ ppm; CD₂Cl₂: $\delta_C \equiv 53.8$ ppm; residual ¹H: $\delta_{\rm H} \equiv 5.32$ ppm; CD₃OD $\delta_{\rm C} \equiv 49.0$ ppm; residual ¹H: $\delta_{\rm H} \equiv 3.30$ ppm; [D]₈acetone: $\delta_{\rm C} \equiv 29.8$ ppm; residual ¹H: $\delta_{\rm H} \equiv 2.05$ ppm). Where indicated, the signal assignments are unambiguous; the numbering scheme is arbitrary as shown in the inserts. The assignments are based upon 1D and 2D spectra recorded using the following pulse sequences from the Bruker standard pulse program library: DEPT; COSY (cosygs, cosydqtp, and cosygpqf); HSQC (invietgssi, and hsqcedetgpsisp².2) optimized for ${}^{1}J(C,H) = 145$ Hz; HMBC (inv4gslplrnd, and hmbcetgpl3nd); for correlations via ⁿJ(C,H); HSQC-TOCSY (invietgsml) using an MLEV17 mixing time of 120 ms; NOESY (noesygpph). IR: Magna IR750 (Nicolet) or Spectrum One (Perkin-Elmer) spectrometer, wavenumbers ($\tilde{\nu}$) in cm⁻¹; MS (EI): Finnigan MAT 8200 (70 eV), ESI-MS: ESQ3000 (Bruker), accurate mass determinations: Bruker APEX III FT-MS (7 T magnet) or Mat 95 (Finnigan). Melting points: Büchi melting point apparatus B-540 (corrected). Elemental analyses: H. Kolbe, Mülheim/Ruhr. All commercially available compounds (Fluka, Lancaster, Aldrich) were used as received.

Building blocks

(S)-1-Hepten-4-ol (10a): A solution of EtMgCl (2 M in THF, 16.2 mL, 32.4 mmol) was added dropwise to a solution of (S)-epichlorohydrine 7 (2.00 g, 21.6 mmol) and CuCN (193 mg, 2.16 mmol) in THF (30 mL) at -78 °C. The mixture was warmed to -20 °C over 3 h

before it was poured into sat. aq. NH_4Cl . The organic layer was separated, the aqueous phase was extracted with Et_2O , the combined organic layers were dried over MgSO₄, filtered and evaporated to afford crude (*S*)-1-chloro-pentan-2-ol (**8a**), which was used without further purification.

Powdered NaOH (4.80 g, 121 mmol) was added to a solution of the crude **8a** in Et₂O (30 mL) and the resulting mixture was stirred at room temperature for 22 h before it was poured into water (10 mL). The organic layer was separated, the aqueous layer was repeatedly extracted with Et₂O (3 x 10 mL), the combined organic phases were dried over MgSO₄, filtered and evaporated to give (*S*)-2-propyloxirane (**9a**), which was used without further purification.

To a stirred solution of crude **9a** thus formed and CuCN (193 mg, 2.16 mmol) in THF (15 mL) was added a solution of vinylmagnesium bromide (1 M in THF, 28.1 mL, 28.1 mmol) at -78 °C over a period of 45 min. The resulting mixture was allowed to warm to 0 °C before the reaction was quenched with sat. aq. NH₄Cl. The aqueous layer was repeatedly extracted with Et₂O, the combined ethereal extracts were washed with brine, dried over MgSO₄, filtered and evaporated. The residue was purified by flash chromatography (hexanes/*tert*-butyl methyl ether, 4/1) to give **10a** as a pale yellow oil (1.91 g, 77 %). The NMR data are in full agreement with those previously reported in the literature.¹ [α]²⁰_D = -12.8 (c = 0.52, CHCl₃); lit. [α]²⁰_D = +12.7 (c = 0.54, CHCl₃) for (R)-enantiomer (99 % ee).

(S)-Non-1-en-4-ol (10b): Prepared analogously as a colorless oil (1.34 g, 74 % overall). $[\alpha]_{D}^{20} = -7.7 \ (c = 1.52, \text{CHCl}_3); {}^{1}\text{H} \text{ NMR} (400 \text{ MHz}, \text{CDCl}_3): \delta = 5.84 \ (\text{dddd}, J = 12.0, 9.4, 7.9, 6.5 \text{ Hz}, 1 \text{ H}), 5.15-5.17 \ (m, 1 \text{ H}), 5.11-5.13 \ (m, 1 \text{ H}), 3.66 \ (\text{ddt}, J = 9.8, 7.8, 4.9 \text{ Hz}, 1 \text{ H}), 2.28-2.35 \ (m, 1 \text{ H}), 2.11-2.18 \ (m, 1 \text{ H}), 1.28-1.59 \ (m, 8 \text{ H}), 0.90 \ (t, J = 7.0 \text{ Hz}, 3 \text{ H}); {}^{13}\text{C}$ NMR (100 MHz, CDCl₃): $\delta = 135.2, 118.3, 70.9, 42.2, 37.0, 32.1, 25.6, 22.8, 14.2; \text{ IR (film):}$ $\tilde{\nu} = 3372, 3077, 2956, 2930, 2857, 1641, 1466, 1378, 1124, 1029, 994, 912, 725; \text{ MS (EI):}$

¹ S.-K. Kang, D.-C. Park, H.-S. Rho, C.-M. Yu, J.-H. Hong, Synth. Commun. 1995, 25, 203-214.

m/z (%): 124 (1) $[M^+]$, 101 (24), 83 (70), 57 (12), 55 (100), 43 (30), 41 (37), 29 (18); HRMS (CI): m/z: calcd for C₉H₁₉O $[M^+ + H]$: 143.1436, found: 143.1435.

Compound 12a: A solution of HBr in HOAc (30 % w/w, 7.1 mL) was added dropwise to a cold (0 °C) solution of 1,2,3,4-tetra-*O*-acetyl-D-fucopyranose (2.08 g, 6.26 mmol)² in CH₂Cl₂ (10 mL) and Ac₂O (0.96 mL) and the resulting mixture was stirred for 0.5 h at room temperature once the addition was complete. The mixture was then concentrated in vacuo and the resulting oil was azeotroped with toluene (3 x 10 mL) to give crude glycosyl bromide **11** which was used in the following step without further purification.

A solution of the crude bromide 11 prepared above in CH_2Cl_2 (120 mL) was added to a suspension of activated MS 4 Å in CH₂Cl₂ (50 mL) and the resulting mixture was stirred at room temperature for 10 min before (S)-1-hepten-4-ol (10a) (476 mg, 4.17 mmol), 2,6-di-tertbutylpyridine (2.40 g, 12.5 mmol) and AgOTf (1.90 g, 7.32 mmol) were successively added. Stirring was continued for 14 h before the suspension was filtered through a pad of Celite. The filtrate was evaporated and the residue purified by flash chromatography (hexanes/tertbutyl methyl ether, 6/1) to give compound **12a** as a colorless syrup (1.36 g, 84 %). $[\alpha]_{D}^{20}$ = -20.1 (c = 0.73, CHCl₃). ¹H NMR (400 MHz, CDCl₃): $\delta = 5.77$ (ddt, J = 17.2, 10.2, 7.0 Hz, 1 H), 5.21 (dd, J = 3.5, 1.1 Hz, 1 H), 5.17-4.99 (m, 4 H), 4.48 (d, J = 7.9 Hz, 1 H), 3.76 (dq, J =6.5, 1.0 Hz, 1 H), 3.64 (m, 1 H), 2.25-2.22 (m, 2 H), 2.17 (s, 3 H), 2.04 (s, 3 H), 1.98 (s, 3 H), 1.63-1.34 (m, 4 H), 1.20 (d, J = 6.7 Hz, 3 H), 0.89 (t, J = 7.3 Hz, 3 H); ¹³C NMR (100 MHz, $CDCl_3$): $\delta = 170.8, 170.3, 169.4, 134.4, 117.1, 100.4, 79.7, 71.5, 70.4, 69.3, 68.9, 38.4, 36.6, 100.4,$ 20.9, 20.7, 20.6, 18.3, 16.1, 14.0; IR (film): $\tilde{\nu} = 3076, 2961, 2937, 2873, 1752, 1641, 1368,$ 1250, 1223, 1074, 915; MS (EI): *m/z* (%): 273 (27), 157 (17), 153 (25), 115 (13), 111 (24), 83 (12), 55 (23), 43 (100); HRMS (ESI): m/z: calcd for C₁₉H₃₀O₈Na [M^+ + Na]: 409.18314, found: 409.18329.

² K. C. Nicolaou, C. W. Hummel, M. Nakada, K. Shibayama, E. N. Pitsinos, H. Saimoto, Y. Mizuno, K.-U. Baldenius, A. L. Smith, *J. Am. Chem. Soc.* **1993**, *115*, 7625-7635.

Compound 12b: Prepared analogously as a colorless syrup (602 mg, 67 %). ¹H NMR (400 MHz, CDCl₃): δ = 5.77 (ddt, *J* = 17.2, 10.2, 7.0 Hz, 1 H), 5.22 (dd, *J* = 3.5, 1.0 Hz, 1 H), 5.16 (dd, *J* = 10.5, 7.9 Hz, 1 H), 5.07 (ddt, *J* = 4.2, 2.2, 1.2 Hz, 1 H), 4.98-5.04 (m, 2 H), 4.48 (d, *J* = 7.9 Hz, 1 H), 4.13 (q, *J* = 7.1 Hz, 1 H), 3.77 (qd, *J* = 6.4, 0.9 Hz, 1 H), 3.63 (pent., *J* = 5.9 Hz, 1 H), 2.24 (t, *J* = 6.2 Hz, 2 H), 2.17 (s, 3 H), 2.04 (s, 3 H), 1.98 (s, 3 H), 1.23-1.61 (m, 7 H), 1.20 (d, *J* = 6.4 Hz, 3 H), 0.89 (t, *J* = 6.8 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ = 171.0, 170.5, 169.7, 134.7, 117.3, 100.8, 80.4, 71.8, 70.6, 69.5, 69.2, 38.7, 34.6, 32.0, 24.9, 22.8, 21.1, 21.0, 20.9, 16.3, 14.3; IR (film): \tilde{v} = 3078, 2985, 2955, 2934, 2861, 1749, 1436, 1367, 1249, 1220, 1173, 1073, 1016, 913, 727; MS (EI): *m/z* (%): 273 (52), 213 (12), 184 (17), 171 (15), 157 (34), 153 (48), 142 (16), 115 (23), 111 (40), 83 (17), 69 (14), 55 (12), 43 (100); HRMS (ESI): *m/z*: calcd for C₂₁H₃₄O₈Na [*M*⁺ + Na]: 437.2146, found: 437.2145.

Compound 13a: Compound 12a (1.92 g, 4.97 mmol) was dissolved in MeOH (20 mL) and treated with KOMe (18 mg, 0.25 mmol) for 3 h. The mixture was neutralized with HCl (1 M) and the solvent was evaporated. The residue was suspended in EtOAc, the mixture passed through a short-pad of silica to remove the inorganic salts, and the filtrate was evaporated. A solution containing the resulting crude product, 2,2'-dimethoxypropane (4.4 mL) and TsOH·H₂O (ca. 20 mg) in acetone (15 mL) was stirred at room temperature for 15 h. For work-up, the solvent was evaporated and the residue purified by flash chromatography (hexanes/EtOAc, $6/1 \rightarrow 4/1$) to give glycoside **13a** as a colorless syrup (1.46 g, 98%). $\left[\alpha\right]_{D}^{20} = +3.4$ (c = 1.18, CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 5.83$ (ddt, J = 17.1, 10.1, 7.2 Hz, 1 H), 5.13-5.08 (m, 2 H), 4.17 (d, J = 8.2 Hz, 1 H), 4.04-3.98 (m, 2 H), 3.83 (dq, J =6.6, 2.2 Hz, 1H), 3.72-3.66 (m, 1 H), 3.50 (dd, J = 8.2, 7.3 Hz, 1 H), 2.35-2.23 (m, 3 H), 1.65-1.33 (m, 13 H), 0.91 (t, J = 7.3 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 134.9$, 117.6, 109.8, 101.6, 78.8, 78.7, 76.3, 73.8, 69.1, 38.7, 37.0, 28.2, 26.3, 18.4, 16.6, 14.0; IR (film): $\tilde{v} = 3483, 3076, 2983, 2959, 2935, 2872, 1641, 1380, 1073, 1036, 990, 918; MS$ (EI): m/z(%): 187 (84), 129 (16), 113 (12), 101 (43), 100 (37), 97 (19), 85 (20), 83 (26), 73 (22), 71 (45), 59 (100), 57 (34), 55 (79), 43 (72), 41 (36), 29 (20); HRMS (ESI): m/z: calcd for $C_{16}H_{28}O_5Na [M^+ + Na]: 323.18287$, found: 323.18290.

Compound 13b: Prepared analogously as a colorless syrup (757 mg, 83 %). $[\alpha]_{D}^{20} = +8.8 (c = 0.8, CHCl_3); {}^{1}H NMR (400 MHz, CDCl_3): \delta = 5.84 (ddt, J = 17.1, 10.2, 7.1 Hz, 1 H), 5.09-5.14 (m, 2 H), 4.18 (d, J = 8.3 Hz, 1 H), 4.03 (dd, J = 7.2, 5.5 Hz, 1 H), 3.99 (dd, J = 5.5, 2.2 Hz, 1 H), 3.84 (qd, J = 6.6, 2.1 Hz, 1 H), 3.65-3.71 (m, 1 H), 3.51 (dd, J = 8.2, 7.3 Hz, 2 H), 2.24-2.34 (m, 2 H), 1.54 (s, 3 H), 1.50-1.68 (m, 2 H), 1.41 (d, J = 6.6 Hz, 3 H), 1.36 (s, 3 H), 1.22-1.39 (m, 6 H), 0.89 (t, J = 7.0 Hz, 3 H); {}^{13}C NMR (100 MHz, CDCl_3): \delta = 135.2, 117.8, 110.0, 101.9, 79.5, 79.0, 76.6, 74.1, 69.4, 38.9, 35.0, 32.0, 28.5, 26.6, 25.0, 22.8, 16.9, 14.3; IR (film): <math>\tilde{\nu} = 3477$, 3074, 2984, 2934, 2862, 1641, 1457, 1380, 1244, 1218, 1181, 1154, 1129, 1069, 1034, 991, 916, 869, 801, 687; MS (EI): m/z (%): 313 (4), 287 (4), 187 (100), 129 (19), 113 (13), 101 (36), 100 (35), 99 (57), 85 (17), 83 (20), 55 (30), 43 (41), 29 (11); HRMS (ESI): m/z: calcd for $C_{18}H_{32}O_5Na [M^+ + Na]$: 351.2153, found: 351.2142.

(Z)-(3-Iodo-3-phenylallyloxy)dimethyl(phenyl)silane (23): Alcohol 22 (1.6 mL, 12.83 mmol) was added dropwise to a solution of sodium bis(2-methoxyethoxy)aluminum hydride (RED-Al, 7.75 mL, 25.7 mmol) in Et₂O (43 mL) at 0 °C and the resulting dark mixture was stirred at ambient temperature for 4 h. For work up, the mixture was cooled to 0 °C and the reaction quenched by slow addition of EtOAc (1.25 mL, 12.83 mmol). After additional 15 min at 0 °C, the mixture was cooled to -78 °C before I2 (4.89 g, 19.25 mmol) was added in one portion. The mixture was allowed to reach room temperature over the course of 5 h before it was quenched with aq. sat. Na₂S₂O₃ (20 mL). The resulting mixture was diluted with water (20 mL), the aqueous layer was extracted with tert-butyl methyl ether (3 x 100 mL), the combined organic layers were dried over MgSO₄ and evaporated, and the residue was purified by flash chromatography (hexanes/Et₂O, 20:1) to give (Z)-3-iodo-3-phenylprop-2-en-1-ol (2.86 g, 86 %) as a pale yellow oil, which analyzed as follows: ¹H NMR (300 MHz, CDCl₃): δ = 7.47-7.51 (m, 2 H), 7.28-7.36 (m, 3 H), 6.27 (t, J = 5.7 Hz, 1 H), 4.40 (d, J = 5.7 Hz, 2 H), 1.75 (br. s, 1 H); ¹³C NMR (75 MHz, CDCl₃): δ = 142.4, 137.2, 128.9, 128.6, 128.5, 105.3, 68.5; IR (film): $\tilde{\nu} = 3325, 3081, 3058, 2912, 2874, 1622, 1591, 1573, 1487, 1442, 1217,$ 1033, 853, 751, 692; MS (EI): m/z (%): 261 (1) $[M^+ + 1]$, 260 (18) $[M^+]$, 133 (100), 115 (16),

105 (26), 104 (13), 103 (79), 102 (22), 77 (30), 55 (37), 51 (13); HRMS (EI): *m*/*z*: calcd for C₉H₉IO: 259.9698, found: 259.9699.

Et₃N (1.531 mL, 10.98 mmol) was added to a solution of this alcohol (2.80 g, 10.77 mmol) in CH₂Cl₂ (54 mL) at 0 °C and the mixture was stirred for 10 min before a solution of chlorodimethylphenylsilane (1.84 mL, 10.98 mmol) in CH₂Cl₂ (10 mL) was added over 15 min. Stirring was continued at 0 °C for 2 h before the reaction was quenched with aq. sat. NH₄Cl (25 mL). The aqueous layer was extracted with CH₂Cl₂ (50 mL), the combined organic phases were dried over Na₂SO₄ and evaporated, and the residue was purified by flash chromatography (hexanes/Et₂O, 20:1) to give product **23** as a pale yellow oil (4.09 g, 96 %). ¹H NMR (300 MHz, CDCl₃): δ = 7.46-7.49 (m, 2 H), 7.24-7.28 (m, 5 H), 7.11-7.15 (m, 3 H), 6.03 (t, *J* = 5.2 Hz, 1 H), 4.24 (d, *J* = 5.2 Hz, 2 H), 0.32 (s, 6 H); ¹³C NMR (75 MHz, CDCl₃): δ = 143.4, 139.1, 138.6, 134.7, 131.0, 129.7, 129.6, 129.4, 129.2, 104.1, 70.4, -0.5; IR (film): $\tilde{\nu}$ = 3069, 3022, 2956, 2865, 1623, 1591, 1575, 1488, 1443, 1427, 1252, 1116, 1059, 877, 826, 787, 741, 694; MS (EI): *m/z* (%): 394 (1) [*M*⁺], 267 (36), 247 (13), 194 (12), 193 (75), 165 (12), 136 (13), 135 (100), 115 (25), 91 (15), 75 (25); HRMS (ESI): *m/z*: calcd for C₁₇H₁₉OISiNa [*M*⁺ +Na]: 417.0148, found: 417.0150.

(Z)-3-(Dimethyl(phenyl)silyl)-3-phenylprop-2-en-1-ol (24): *t*BuLi (1.5 M in pentane, 3.72 ml, 5.58 mmol) was added over 10 min to a solution of vinyl iodide 23 (1.00 g, 2.54 mmol) in THF (13 mL) at -78 °C. After stirring for 2 h at that temperature, the reaction was quenched with aq. sat. NH₄Cl (20 mL), the aqueous layer was extracted with *tert*-butyl methyl ether (3 x 25 mL), the combined extracts were dried over MgSO₄ and evaporated, and the residue was purified by flash chromatography (hexanes/Et₂O, 5:1) to give vinylsilane 24 (385 mg, 57 %) as a colorless syrup. ¹H NMR (300 MHz, CDCl₃): δ = 7.45-7.48 (m, 2 H), 7.24-7.28 (m, 3 H), 7.05-7.19 (m, 3 H), 6.99-6.95 (m, 2 H), 6.24 (t, *J* = 6.9 Hz, 1 H), 3.98 (d, *J* = 6.8 Hz, 2 H), 1.27 (br. s, 1 H), 0.22 (s, 6 H); ¹³C NMR (75 MHz, CDCl₃): δ = 146.0, 145.4, 144.9, 139.4, 133.9, 129.5, 128.4, 128.2, 127.6, 126.2, 62.5, -0.2; IR (film): $\tilde{\nu}$ = 3337, 3069, 3052, 3019, 3022, 2956, 2898, 1596, 1489, 1441, 1427, 1251, 1110, 1030, 881, 811, 778, 731, 700; MS

(EI): m/z (%): 268 (0.6) $[M^+]$, 253 (10), 250 (31), 236 (13), 235 (54), 191 (18), 190 (30), 175 (48), 173 (23), 137 (59), 135 (100), 116 (45), 115 (70), 107 (14), 105 (15), 91 (14), 75 (72), 45 (11), 43 (15); HRMS (ESI): m/z: calcd for C₁₇H₂₀OSiNa $[M^+ + Na]$: 291.1176, found: 291.1174.

(*Z*)-3-Dimethyl(phenyl)silyl-2-propenoic acid (26): Oxalyl chloride (0.13 mL, 1.49 mmol) was added dropwise at -78 °C to a solution of DMSO (0.21 mL, 2.99 mmol) in CH₂Cl₂ (5 mL) and the mixture as stirred for 15 min at that temperature. A solution of alcohol 24 (267 mg, 1.00 mmol) in CH₂Cl₂ (2.0 mL) was introduced and the resulting suspension was stirred for 45 min, at which point Et₃N (0.56 mL, 3.98 mmol) was added. The mixture was allowed to warm to 0 °C over 1.5 h before the reaction was quenched with sat. aq. NH₄Cl. The aqueous layer was repeatedly extracted with ether, the combined organic phases were washed with brine, dried over Na₂SO₄, and the solvent was evaporated to afford the corresponding aldehyde 25 as a pale yellow oil which was used without further purification (239 mg, 90 %). Characteristic data: ¹H NMR (400 MHz, CD₂Cl₂): δ = 9.83 (d, *J* = 8.4 Hz, 1 H), 7.61-7.58 (m, 2 H), 7.42-7.30 (m, 6 H), 7.16-7.13 (m, 2 H), 6.51 (d, *J* = 8.4 Hz, 1 H), 0.34 (s, 6 H); ¹³C NMR (100 MHz, CD₂Cl₂): δ = 192.9, 168.4, 144.6, 143.7, 138.2, 134.1, 130.0, 128.6, 127.8, 126.7, 0.3; IR (film): $\tilde{\nu}$ = 2839, 2739, 1677, 1489, 1428, 1254, 1111, 814, 783, 733, 701, 641, 472; MS (EI): *m/z* (%): 135 (51), 189 (78), 251 (100), 266 (9); HRMS (ESI): *m/z*: calcd for C₁₇H₁₈OSiNa [*M*⁺ + Na]: 289.10192, found: 289.10184.

A solution of NaH₂PO₄ (73 mg, 0.61 mmol) in water (0.48 mL), 2-methyl-2-butene (0.21 mL), and NaClO₂ (109 mg, 1.2 mmol) were successively added to a solution of the crude aldehyde **25** (100 mg, 0.38 mmol) in *t*BuOH (3.0 mL). The mixture was stirred for 2.5 h, all volatiles were evaporated, and the residue was purified by flash chromatography (hexanes/EtOAc/AcOH, 100:10:0.1) to give acid **26** (99.8 mg, 93 %) as a white solid. M.p. = 77-78 °C. ¹H NMR (400 MHz, CDCl₃): δ =7.51-7.49 (m, 2 H), 7.30-7.24 (m, 6 H), 7.08-7.05 (m, 2 H), 6.44 (s, 1 H), 0.37 (s, 6 H); ¹³C NMR (100 MHz, CDCl₃): δ = 166.9, 144.8, 138.2, 133.7, 132.9, 128.7, 128.0, 127.5, 126.9, 126.4, 95.7, -0.9; IR (film): $\tilde{\nu}$ = 3022, 2954, 1694,

1589, 1489, 1410, 1313, 1251, 815, 701; MS (EI): *m/z* (%): 75 (20), 205 (60), 267 (100), 282 (1); HRMS (EI): *m/z*: calcd for C₁₇H₁₇O₂Si: 281.10033, found: 281.10064.

dl-5-Hydroxy-5-(2-furyl)-1-pentene (rac-40): Magnesium turnings (335 mg, 13.8 mmol) in THF (1 mL) were activated with 1,2-dibromoethane (25 μ L) before additional THF (7.0 mL) was added. A solution of 1-bromo-3-pentene (1.70 g, 12.5 mmol) in THF (2.0 mL) was introduced over 30 min and the mixture was stirred at ambient temperature for 1 h. The solution of the resulting Grignard reagent was cooled to 0 °C before aldehyde 39 (1.0 g, 10.4 mmol) was added at that temperature. After 2 h, the mixture was quenched with aq. HCl (5 mL, 1 M), the aqueous layer was repeatedly extracted with Et₂O, and the combined ethereal phases were washed with brine, dried over MgSO₄, filtered and evaporated. The residue was purified by flash chromatography (hexanes/EtOAc, 9/1) to give product rac-40 as a pale yellow oil (1.30 g, 82%), which should be quickly used in the next step or stored at -78 °C. ¹H NMR (400 MHz, CDCl₃): δ =7.37 (dd, J = 1.8, 0.8 Hz, 1 H), 6.33 (dd, J = 3.2, 1.8 Hz, 1 H), 6.24 (d, J = 3.2 Hz, 1 H), 5.84 (ddt, J = 17.0, 10.3, 6.6 Hz, 1H), 5.08-4.97 (m, 2 H), 4.70 (t, J = 6.7 Hz, 1 H), 2.20-2.12 (m, 2 H), 1.98-1.92 (m, 3 H); ¹³C NMR (100 MHz, CDCl₃); $\delta =$ 156.6, 142.0, 137.8, 115.2, 110.1, 105.9, 67.2, 34.6, 29.7; IR (film): $\tilde{\nu} = 3366, 2943, 2863,$ 1641, 1505, 1149, 1066, 1009, 913, 738, 599; MS (EI): *m/z* (%): 152 (3), 134 (5), 123 (3), 110 (23), 97 (100), 69 (12), 41 (35), 39 (28), 29 (12), 27 (13); HRMS (EI): m/z: calcd for C₉H₁₂O₂: 152.08358, found: 152.08373.

Kinetic resolution: preparation of (–)-**40.** D-(–)-DIPT (2.50 g, 11.8 mmol) was added to a solution of Ti(O*i*Pr)₄ (2.90 mL, 9.86 mmol) in CH₂Cl₂ (45 mL) at –20 °C. After stirring for 10 min, the mixture was cooled to –30 °C and a solution of *rac*-**40** (1.50 g, 9.86 mmol) in CH₂Cl₂ (2 mL) was slowly introduced. After stirring for 30 min, a solution of *tert*-butylhydroperoxide (5 M in decane, 1.18 mL, 5.92 mmol) was added, and the mixture was stirred for 24 h at –20 °C. For work-up, the mixture was filtered through a pad of silica and the filtrate was evaporated. The residue was purified by flash chromatography (hexanes/EtOAc, 9/1) to give (–)-**40** as a pale yellow oil (701 mg, 47 %, > 99 % *ee*), which

should be quickly used in the next step or stored at -78 °C. The *ee* was determined by HPLC (Chiralcel OB-H, hexane/*i*PrOH = 95/5). The NMR data are identical with those of the racemic sample described above. $[\alpha]_{D}^{20} = -6.6$ (c = 1.12, CHCl₃).

Compound 41: To a solution of alcohol (-)-40 (333 mg, 2.19 mmol) and VO(acac)₂ (6.00 mg, 0.023 mmol) in CH₂Cl₂ (2.0 mL) was added tert-butylhydroperoxide (TBHP, 5 M in decane, 0.44 mL, 2.19 mmol). After stirring for 1 h at room temperature, additional VO(acac)₂ (6.00 mg, 0.023 mmol) and TBHP (0.44 mL, 2.19 mmol) were added and stirring was continued for 2 h. The mixture was then passed through a short pad of silica, the filtrate was evaporated, and the residue purified by flash chromatography (hexanes/EtOAc, 4/1) to give compound **41** as a mixture of diastereomers (262 mg, 71 %, major/minor = 69/31). ¹H NMR (400 MHz, CDCl₃): δ =6.94 (dd, J = 10.3, 1.5 Hz, 1 H of minor isomer), 6.90 (dd, J = 10.3, 3.5 Hz, 1 H of major isomer), 6.16 (dd, J = 10.3, 1.6 Hz, 1 H of minor isomer), 6.11 (d, J = 10.3 Hz, 1 H of major isomer), 5.87-5.76 (m, 1 H), 5.66-5.65 (m, 1 H), 5.18-4.98 (m, 2 H), 4.59 (dd, J = 8.3, 3.8 Hz, 1 H of major isomer), 4.11 (ddd, J = 8.6, 3.8, 1.2 Hz, 1 H of minor isomer), 3.34 (br, 1 H of minor isomer), 3.06 (br, 1 H of major isomer), 2.24-2.18 (m, 2 H), 2.07-2.03 (m, 1 H), 1.18-1.74 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃): δ = 196.5 (major), 196.1 (minor), 147.6 (minor), 144.2 (major), 137.7 (major), 137.5 (minor), 128.8 (minor), 127.7 (major), 115.5 (minor), 115.4 (major), 90.9 (minor), 87.7 (major), 78.0 (minor), 73.3 (major), 29.7 (minor), 29.1 (minor), 29.0 (major), 28.8 (major); IR (film): $\tilde{\nu} = 3411, 3077$, 2926, 1690, 1641, 1089, 1033, 916; MS (EI): *m/z* (%): 168 (4), 114 (20), 84 (100), 56 (28), 55 (39), 39 (10), 29 (12), 28 (12), 27 (14); HRMS (EI): m/z: calcd for C₉H₁₂O₃: 168.07864, found: 168.07852.

Compound 42: Jones' reagent $(1.7 \text{ mL})^3$ was added dropwise to an ice-cold solution of hemiacetal **41** (413 mg, 2.46 mmol) in acetone (13 mL). The resulting mixture was stirred for 3 h at room temperature before the mixture was diluted with *tert*-butyl methyl ether (50 mL)

³ M. P. Georgiadis, A. Tsekouras, S. I. Kotretsou, S. A. Haroutounian, M. G. Polissiou, *Synthesis* **1991**, 929-932.

and washed with water. The organic phase was dried over Na₂SO₄, filtered, and evaporated to give the crude oxidation product.

To a solution of this material in CHCl₃ (26 mL) and AcOH (17 mL) was added zinc powder (1.2 g), the suspension was stirred for 3 h, excess zinc was filtered off through Celite, the filtrate was evaporated azeotropically with benzene to remove residual HOAc, and the crude product was purified by flash chromatography (hexanes/*tert*-butyl methyl ether, $2/1 \rightarrow 1/1$) to give compound **42** as a colorless oil (324 mg, 78 %). $[\alpha]_{D}^{20} = -246.3$ (c = 1.08, CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 5.77$ (ddt, J = 16.9, 10.3, 6.7 Hz, 1 H), 5.11-5.02 (m, 2 H), 4.68 (dd, J = 8.2, 4.0 Hz, 1 H), 2.93-2.89 (m, 2 H), 2.79-2.64 (m, 2 H), 2.34-2.19 (m, 2 H), 2.13-2.04 (m, 1 H), 1.96-1.86 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 205.4$, 170.0, 136.5, 116.4, 82.2, 33.8, 29.6, 28.6, 28.2; IR (film): $\tilde{\nu} = 3079$, 2929, 1759, 1735, 1641, 1267, 1171, 999, 919; MS (EI): m/z (%): 168 (5), 114 (72), 98 (3), 86 (5), 56 (100), 55 (27), 42 (10), 41 (12), 39 (13), 29 (18), 28 (53), 27 (22); HRMS (EI): m/z: calcd for C₉H₁₂O₃: 168.07865, found: 168.07886.

Compound 43: To a solution of ketolactone **42** (100 mg, 0.59 mmol) and 2trimethylsilylethanol (0.17 mL, 1.18 mmol) in CH₂Cl₂ (1.0 mL) was added *p*-TsOH·H₂O (2 mg). After stirring for 15 h, the mixture was neutralized with triethylamine and passed through a pad of silica which was carefully rinsed with EtOAc. The filtrate was evaporated, the residue dissolved in CH₂Cl₂ (10 mL) and treated with triethylamine (0.50 mL, 3.54 mmol), Ac₂O (0.22 mL, 2.36 mmol) and DMAP (10 mg, 0.08 mmol). After 3 h, the suspension was filtered through a pad of silica which was carefully rinsed with EtOAc. Evaporation of the solvent followed by flash chromatography of the residue (hexanes/EtOAc, 10/1) gave compound **43** as a colorless oil (156 mg, 93 %, 97 % *ee*). The *ee* was determined by HPLC (Chiralcel AD, heptane/*i*PrOH = 98/2). $[\alpha]_D^{20} = -4.3$ (*c* = 0.62, CH₂Cl₂); ¹H NMR (400 MHz, CD₂Cl₂): δ = 5.81 (ddt, *J* = 17.0, 10.3, 6.6 Hz, 1 H), 5.09-4.98 (m, 3 H), 4.14 (m, 2 H), 2.78-2.72 (m, 2 H), 2.56-2.51 (m, 2 H), 2.21-2.11 (m, 5 H), 1.92-1.80 (m, 2 H), 0.97 (m, 2 H), 0.04 (s, 9 H); ¹³C NMR (100 MHz, CD₂Cl₂): δ = 206.2, 172.7, 170.8, 137.4, 115.9, 78.0, 63.2, 33.7, 30.1, 29.6, 27.9, 20.8, 17.6, -1.5; IR (film): $\tilde{\nu} = 3079$, 2954, 1732, 1642, 1249, 1235, 1063, 996, 919, 860, 839, 695; MS (EI): m/z (%): 43 (47), 73 (100), 117 (33), 133 (10), 173 (82); HRMS (ESI): m/z: calcd for C₁₆H₂₈O₅SiNa [M^+ + Na]: 351.15983, found: 351.15998.

Acid 44: A solution of compound 43 (50 mg, 0.176 mmol) in DMF (1.0 mL) was added to a solution of TASF (73 mg, 0.264 mmol) in DMF (1.0 mL). After stirring for 3 h, the mixture was filtered through a pad of silica which was rinsed with EtOAc several times, and the combined filtrates were evaporated. Flash chromatography (hexanes/EtOAc/HOAc, 2/1/0.01) of the residue gave carboxylic acid 44 as a colorless oil (28 mg, 68 %). $[\alpha]_D^{20} = -2.1 (c = 0.60, CH_2Cl_2)$; ¹H NMR (400 MHz, CD₂Cl₂): $\delta = 5.81$ (ddt, J = 17.0, 10.3, 6.7 Hz, 1H), 5.09-4.99 (m, 3 H), 2.80-2.60 (m, 4 H), 2.20-2.12 (m, 5 H), 1.92-1.80 (m, 2 H); ¹³C NMR (100 MHz, CD₂Cl₂): $\delta = 206.1, 177.9, 170.9, 137.4, 115.9, 78.0, 33.5, 30.0, 29.6, 27.5, 20.8; IR (film): <math>\tilde{\nu} = 3079, 2928, 1741, 1731, 1713, 1642, 1237, 999, 918;$ MS (EI): m/z (%): 43 (100), 85 (12), 101 (40), 114 (7), 132 (5), 174 (6); HRMS (ESI): m/z: calcd for C₁₁H₁₆O₅Na [M^+ + Na]: 251.08899, found: 251.08903.

Compound 48: *p*TsOH·H₂O (4 mg) was added to a solution of compound **42** (200 mg, 1.19 mmol) and 2-trimethylsilyl ethanol (0.34 mL, 2.38 mmol) in CH₂Cl₂ (2.0 mL). After stirring at room temperature for 2 h, the reaction was quenched with triethylamine and the mixture passed through a short pad of silica which was carefully rinsed with EtOAc. The combined filtrates were evaporated and the residue purified by flash column chromatography (hexanes/EtOAc, 6/1) to give a mixture of the corresponding ester and residual 2-trimethylsilyl ethanol. PMB trichloroacetimidate (701 mg, 2.48 mmol)⁴ and TfOH (5 μ L, 0.0573 mmol) were added to a solution of this material in Et₂O (12 mL) at 0 °C. After stirring for 20 min, triethylamine was introduced and the mixture was filtered through a short pad of silica which was carefully rinsed with EtOAc. Evaporation of the combined filtrates and purification of the residue by flash chromatography (hexanes/EtOAc, 20/1) gave compound

⁴ R. Hong, Y. Chen, L. Deng, Angew. Chem. 2005, 117, 3544-3547; Angew. Chem. Int. Ed. 2005, 44, 3478-3481.

48 (307 mg, 63 % over both steps, 97 % *ee*). The *ee* was determined by HPLC (Chiralpack AD, heptane/*i*PrOH = 98/2). $[\alpha]_D^{20} = -26.6$ (c = 0.68, CH₂Cl₂); ¹H NMR (400 MHz, CD₂Cl₂): $\delta = 7.28$ (d, J = 8.8 Hz, 2 H), 6.89 (d, J = 8.8 Hz, 2 H), 5.79 (ddt, J = 17.1, 10.5, 6.5 Hz, 1 H), 5.04-4.96 (m, 3 H), 4.52 (d, J = 11.1 Hz, 1 H), 4.36 (d, J = 11.1 Hz, 1 H), 4.15 (m, 2 H), 3.84 (dd, J = 7.8, 5.0 Hz, 1 H), 3.80 (s, 3 H), 2.82 (dt, J = 6.6, 2.6 Hz, 2 H), 2.55-2.52 (m, 2 H), 2.15-2.10 (m, 1 H), 1.78-1.71 (m, 2 H), 0.99 (m, 2 H), 0.05 (s, 9 H); ¹³C NMR (100 MHz, CD₂Cl₂): $\delta = 211.5$, 173.0, 159.9, 138.2, 130.4, 130.0, 115.4, 114.2, 84.2, 72.5, 63.1, 55.6, 33.2, 31.9, 29.7, 28.1, 27.1, 17.6, -1.5; IR (film): $\tilde{\nu} = 3076$, 2953, 2837, 1730, 1641, 1613, 1586, 1514, 1303, 1250, 1092, 996, 917, 838, 762; MS (EI): m/z (%): 73 (13), 111 (7), 121 (100), 173 (11), 201 (7), 204 (7); HRMS (ESI): m/z: calcd for C₂₂H₃₄O₅SiNa [M^+ + Na]: 429.20677, found: 429.20718.

Acid 49: A solution of 48 (212 mg, 0.52 mmol) in DMF (2.0 mL) was added to a solution of TASF (215 mg, 0.78 mmol) in DMF (1.0 mL) and the resulting mixture stirred for 3 h. For work up, aq. sat. NH₄Cl (100 µL) was added, the mixture filtered through a pad of silica, which was rinsed with EtOAc. The combined filtrates were evaporated and the residue was purified by flash chromatography (hexanes/EtOAc, 1/1) to give acid 49 as a colorless syrup (120 mg, 76 %, 97 % *ee*). The *ee* was determined by HPLC (Chiralcel OD-H, heptane/*i*PrOH = 1/1). $[\alpha]_D^{20} = -15.2$ (*c* = 0.46, CH₂Cl₂); ¹H NMR (300 MHz, CD₂Cl₂): $\delta =$ 7.27 (d, *J* = 8.7 Hz, 2 H), 6.88 (d, *J* = 8.7 Hz, 2 H), 5.78 (ddt, *J* = 17.0, 10.3, 6.6 Hz, 1 H), 5.04-4.95 (m, 2 H), 4.50 (d, *J* = 11.1 Hz, 1 H), 4.36 (d, *J* = 11.1 Hz, 1 H), 3.84 (dd, *J* = 7.5, 5.3 Hz, 1 H), 3.79 (s, 3 H), 2.84 (m, 2 H), 2.61 (t, *J* = 6.2 Hz, 2 H), 2.18-2.09 (m, 2 H), 1.78-1.69 (m, 2 H); ¹³C NMR (75 MHz, CD₂Cl₂): $\delta =$ 211.4, 117.8, 159.9, 138.1, 130.2, 130.0, 115.5, 114.1, 84.1, 72.5, 55.6, 32.9, 31.8, 29.6, 27.5; IR (film): $\tilde{\nu} =$ 3076, 3001, 2936, 1712, 1641, 1612, 1586, 1514, 1250, 1091, 1034, 917, 822. MS (EI): *m/z* (%): 77 (3), 78 (3), 91 (2), 121 (100), 137 (4), 170 (4), 222 (4); HRMS (ESI): *m/z*: calcd for C₁₇H₂₂O₅Na [*M*⁺ + Na]: 329.13594, found: 329.13632.

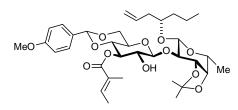
Sugar building blocks

Trichloroacetimidate 15: Trichloroacetonitrile (0.48 mL, 4.79 mmol) and Cs₂CO₃ (85 mg, 0.26 mmol) were added to a solution of compound 14 (1.00 g, 2.62 mmol)⁵ in CH₂Cl₂ (4 mL) and the resulting mixture was stirred for 15 h at ambient temperature before it was filtered through a pad of silica. The filtrate was evaporated and the residue purified by flash chromatography (hexanes/EtOAc, 2/1) to give trichloroacetimidate 15 as a mixture of anomers (1.19 g, 86 %, $\alpha:\beta = 2:1$). $[\alpha]_{D}^{20} = +25.9$ (c = 0.83, CH₂Cl₂); ¹H NMR (400 MHz, CD₂Cl₂): δ = 8.81 (s, 1 H of β-anomer), 8.71 (s, 1 H of α-anomer), 7.37-7.35 (m, 2 H), 6.89-6.86 (m, 2 H), 6.53 (d, J = 3.9 Hz, 1 H of α-anomer), 6.00 (d, J = 7.7 Hz, 1 H of β-anomer), 5.61 (t, J = 9.9 Hz, 1 H of α -anomer), 5.49 (s, 1 H of α -anomer), 5.48 (s, 1 H of β -anomer), 5.35 (t, J = 8.8 Hz, 1 H of β -anomer), 5.26 (dd, J = 8.6, 7.8 Hz, 1 H of β -anomer), 5.12 (dd, J = 9.9, 3.9 Hz, 1H of α -anomer), 4.37 (dd, J = 9.8, 4.3 Hz, 1 H of β -anomer), 4.31 (dd, J =10.4, 5.0 Hz, 1 H of α -anomer), 4.13-4.05 (m, 1 H), 4.88-3.72 (m, 5 H), 2.06 (s, 3 H of α anomer), 2.04 (s, 3 H of β -anomer), 2.02 (s, 3 H of β -anomer), 2.01 (s, 3 H of α -anomer); ¹³C NMR (100 MHz, CD₂Cl₂): α -anomer: δ = 170.4, 170.0, 161.3, 160.6, 129.7, 127.8, 113.9, 102.0, 93.9, 78.9, 70.7, 69.0, 68.7, 67.4, 65.5, 55.6, 21.0, 20.6; β -anomer: δ = 170.4, 169.4, 161.0, 160.6, 129.7, 127.9, 113.9, 102.0, 96.2, 78.3, 71.8, 71.4, 68.7, 67.4, 65.5, 55.6, 20.9, 20.7; IR (KBr): $\tilde{\nu} = 3348, 2940, 1754, 1676, 1616, 1589, 1519, 1236, 1071, 1033, 834;$ MS (EI): *m*/*z* (%): 527 (22), 365 (9), 179 (16), 137 (51), 136 (100), 135 (71), 43 (85); HRMS (EI): m/z: calcd for C₂₀H₂₂Cl₃NO₉ [M^+ + H]: 526.04329, found: 526.04327.

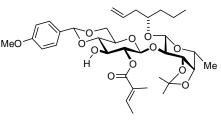
Disaccharide 16a (n = 1): BF₃·Et₂O (0.25 M in Et₂O, 1.90 mL) was added to a solution of trichloroacetimidate **15** (746 mg, 1.41 mmol) and alcohol **13a** (500 mg, 1.66 mmol) in CH₂Cl₂/pentane (2.0 mL each) at -20 °C. After stirring at that temperature for 30 min, the reaction was quenched with sat. aq. NaHCO₃ and the mixture diluted with CH₂Cl₂. The organic layer was separated, dried over Na₂SO₄, and evaporated, and the residue purified by flash chromatography (hexanes/EtOAc, 4/1) to give disaccharide **16a** as a white solid (696 mg, 77 %). M.p. = 129-130 °C. $[\alpha]_D^{20} = -35.1$ (c = 0.70, CH₂Cl₂); ¹H NMR (400 MHz,

⁵ A. Fürstner, K. Radkowski, J. Grabowski, C. Wirtz, R. Mynott, J. Org. Chem. 2000, 65, 8758-8762.

CD₂Cl₂): δ = 7.35 (d, *J* = 8.8 Hz, 2 H), 6.87 (d, *J* = 8.8 Hz, 2 H), 5.90 (ddt, *J* = 17.2, 10.1, 7.2 Hz, 1 H), 5.46 (s, 1 H), 5.28-5.23 (m, 1 H), 5.10-5.03 (m, 2 H), 5.01 (d, *J* = 7.6 Hz, 1 H), 4.95-4.91 (m, 1 H), 4.33 (dd, *J* = 10.4, 5.0 Hz, 1 H), 4.27 (d, *J* = 8.0 Hz, 1 H), 4.03-4.00 (m, 1 H), 3.96 (dd, *J* = 5.6, 2.1 Hz, 1 H), 3.82-3.49 (m, 9 H), 2.28-2.24 (m, 2 H), 2.05 (s, 3 H), 2.02 (s, 3 H), 1.52-1.31 (13 H), 0.92 (t, *J* = 7.2 Hz, 3 H); ¹³C NMR (100 MHz, CD₂Cl₂): δ = 170.3, 169.8, 160.6, 135.7, 130.0, 127.8, 116.8, 113.8, 110.0, 101.8, 100.6, 100.1, 80.2, 79.7, 78.7, 78.5, 76.9, 73.0, 72.3, 69.0, 68.8, 66.7, 55.6, 38.9, 37.1, 28.1, 26.4, 21.0, 20.9, 18.7, 16.7, 14.2; IR (film): $\tilde{\nu}$ = 3073, 2936, 2873, 1755, 1640, 1616, 1518, 1371, 1244, 1219, 1175, 1099, 1073, 1037, 920, 831; MS (EI): *m*/*z* (%): 43 (100), 55 (54), 57 (13), 59 (16), 97 (16), 99 (78), 100 (45), 109 (14), 121 (14), 127 (14), 135 (28), 136 (26), 137 (38), 169 (26), 179 (53), 305 (30), 365 (63), 366 (13), 551 (13); HRMS (ESI): *m*/*z*: calcd for C₃₄H₄₈O₁₃ [*M*⁺ + H]: 665.31732, found: 665.31667.


Compound 16b (n = 3): Freshly activated MS 4 Å (174 mg) were added to a solution of fucoside 13b (600 mg, 1.827 mmol) and trichloroacetimidate 15 (916 mg, 1.740 mmol) in CH₂Cl₂ (17.4 mL) and the resulting solution was stirred for 10 min before it was cooled to -30 °C. TMSOTf (31 µL, 0.174 mmol) was then added dropwise and stirring continued for 45 min at -30 °C before the reaction was quenched with Et₃N (0.5 mL). The resulting mixture was allowed to reach ambient temperature, the solvents were evaporated, and the residue was purified by flash chromatography (hexanes/EtOAc, $10:1\rightarrow 4:1$) to give disaccharide **16b** as a colorless solid (1.15 g, 95 %). M.p. = 134-135 °C; $[\alpha]_{D}^{20} = -27.8 \ (c = 0.77, \text{ CHCl}_3); ^{1}\text{H NMR}$ (400 MHz, CDCl₃): δ = 7.48 (d, J = 8.7 Hz, 2 H), 6.74 (d, J = 8.8 Hz, 2 H), 6.16 (ddt, J = 17.3, 10.4, 7.1 Hz, 1 H), 5.61 (dd, J = 9.5, 8.8 Hz, 1 H), 5.44 (dd, J = 8.6, 7.5 Hz, 1 H), 5.28 (s, 1 H), 5.17-5.23 (m, 2 H), 5.08 (d, J = 7.4 Hz, 1 H), 4.27 (d, J = 7.7 Hz, 1 H), 4.25 (dd, J = 10.6, 4.7 Hz, 1 H), 3.98 (dd, J = 13.3, 7.6 Hz, 1 H), 3.91 (dd, J = 10.4, 7.0 Hz, 1 H), 3.75 (td, J = 10.5, 5.9 Hz, 1 H), 3.67 (t, J = 9.5 Hz, 1 H), 3.59 (t, J = 10.2 Hz, 1 H), 3.54 (dd, J = 5.5, 2.1 Hz, 1 H), 3.39 (td, J = 9.9, 5.0 Hz, 1 H), 3.24 (s, 3 H), 3.19-3.26 (m, 1 H), 2.34-2.46 (m, 2 H), 1.90 (s, 3 H), 1.74 (s, 3 H), 1.44-1.59 (m, 3 H), 1.31 (d, J = 6.5 Hz, 3 H), 1.24-1.29 (m, 8 H), 1.25 (s, 3 H), 0.87 (t, J = 7.0 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 170.2$, 169.8, 161.0, 136.2, 130.7, 128.6, 128.3, 117.3, 114.2, 110.1, 102.3, 101.2, 100.9, 80.4, 80.2, 79.1, 79.0, 77.1, 74.0, 73.1, 69.2, 68.9, 66.9, 55.1, 39.7, 35.6, 32.6, 28.4, 26.8, 25.6, 23.4, 21.0, 20.8, 17.1, 14.7; IR (film): $\tilde{\nu} = 2984$, 2954, 2035, 2873, 1743, 1695, 1614, 1519, 1377, 1303, 1245, 1219, 1179, 1073, 1033, 996, 834, 815, 787, 681; MS (EI): m/z (%): 551 (19), 366 (20), 365 (100), 306 (12), 105 (60), 245 (11), 229 (11), 179 (78), 169 (34), 157 (10), 152 (20), 137 (45), 136 (27), 135 (32), 132 (11), 127 (18), 121 (17), 109 (18), 100 (50), 99 (81), 83 (12), 69 (22), 59 (12), 55 (17), 43 (83); HRMS (ESI): m/z: calcd for C₃₆H₅₂O₁₃Na: [M^+ + Na]: 715.3300, found: 715.3298.

Disaccharide 17a (n = 1): A solution of disaccaride **16a** (686 mg, 1.06 mmol) and KOMe (10 mg) in MeOH (10 mL) was stirred for 4 h before it was filtered through a pad of silica and evaporated. The residue was purified by flash chromatography (hexanes/EtOAc, $2/1 \rightarrow 0/1$) to give disaccharide **17a** as a white solid (518 mg, 84 %). M.p. = 68-69 °C. $[\alpha]_D^{20} = -9.9$ (c = 1.21, CH₂Cl₂); ¹H NMR (400 MHz, CD₂Cl₂): $\delta = 7.43$ (d, J = 8.8 Hz, 2 H), 6.92 (d, J = 8.8 Hz, 2 H), 5.95 (ddt, J = 17.2, 10.2, 7.1 Hz, 1 H), 5.52 (s, 1 H), 5.14-5.07 (m, 2 H), 4.69 (d, J = 7.7 Hz, 1 H), 4.35 (d, J = 8.2 Hz, 1 H), 4.31 (dd, J = 10.5, 4.9 Hz, 1 H), 4.17 (dd, J = 7.4, 5.5 Hz, 1 H), 4.04 (dd, J = 5.4, 2.1 Hz, 1 H), 3.86-3.44 (m, 12 H), 2.80 (br, 1 H), 2.32 (m, 1 H), 1.66 (br, 1 H), 1.56-1.30 (m, 13 H), 0.94 (t, J = 7.3 Hz, 3 H); ¹³C NMR (100 MHz, CD₂Cl₂): $\delta = 160.6$, 135.4, 130.2, 127.9, 116.9, 113.8, 110.4, 104.3, 102.1, 100.2, 96.0, 81.0, 79.2, 78.6, 77.0, 76.3, 73.2, 69.0, 68.8, 67.3, 55.6, 38.6, 36.9, 28.0, 26.3, 18.5, 16.6, 14.2; IR (film): $\tilde{\nu} = 3459$, 3072, 2935, 2872, 1640, 1615, 1589, 1518, 1382, 1250, 1075, 1034, 923, 831; MS (EI): m/z (%): 41 (18), 43 (20), 55 (63), 57 (25), 59 (25), 69 (14), 73 (14), 85 (14), 97 (14), 99 (100), 100 (58), 101 (11), 135 (29), 136 (37), 137 (70), 281 (78), 282 (13), 467 (35); HRMS (EI): m/z: calcd for C₃₀H₄₅O₁₁ [M^+ + H]: 581.29684, found: 581.29659.


Compound 17b (n = 3): Prepared analogously from diacetate **16b** (481 mg, 0.695 mmol) as a colorless solid (316.2 mg, 76 %). $[\alpha]_{D}^{20} = +3.7$ (c = 0.88, CHCl₃); ¹H NMR (300 MHz, C₆D₆): $\delta = 7.53$ (m, 2 H), 6.81 (m, 2 H), 6.15 (m, 1 H), 5.28 (s, 1 H), 5.16 (d, J = 4.7 Hz, 1 H), 5.12 (s, 1 H), 4.80 (d, J = 7.4 Hz, 1 H), 4.33 (dd, J = 10.3, 4.6 Hz, 1 H), 4.25 (d, J = 7.7 Hz, 1 H),

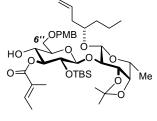
3.88-4.03 (m, 1 H), 3.90 (dd, J = 15.9, 7.5 Hz, 1 H), 3.70-3.85 (m, 2 H), 3.59 (t, J = 9.9 Hz, 1 H), 3.35-3.50 (m, 3 H), 3.26 (s, 3 H), 3.21 (dd, J = 6.5, 2.1 Hz, 1 H), 2.75 (br s, 1 H), 2.39 (dd, J = 6.8, 5.8 Hz, 2 H), 1.48-1.75 (m, 4 H), 1.43 (s, 3 H), 1.22-1.41 (m, 9 H), 1.19 (s, 3 H), 0.88 (t, J = 6.8 Hz, 3 H); ¹³C NMR (75 MHz, C₆D₆): $\delta = 161.2$, 136.3, 131.4, 128.8, 117.5, 114.3, 110.8, 105.1, 102.6 101.4, 81.8, 81.5, 79.9, 77.4, 77.3, 74.3, 69.5, 69.1, 68.0, 55.4, 39.8, 35.6, 32.8, 28.5, 26.9, 25.8, 23.6, 17.4, 14.9; IR (film): $\tilde{\nu} = 3468$, 3076, 2978, 2934, 2871, 1615, 1519, 1457, 1379, 1303, 1248, 1173, 1070, 1030, 921, 868, 828, 787, 725, 688; HRMS (ESI): m/z: calcd for C₃₂H₄₈O₁₆Na [M^+ + Na]: 631.3089, found: 631.3092.

Regioselective acylation: preparation of compound 18a (n = 1): A solution of diol 17a (690 mg, 1.19 mmol), DMAP (73.0 mg, 0.60 mmol) and DCC (293 mg, 1.42 mmol) in CH_2Cl_2 (30 mL) was stirred for 5 min prior to the addition of (E)-2-methylbutenoic acid (119 mg, 1.19 mmol). Stirring was continued overnight and the resulting precipitate was filtered off through a pad of silica. The insoluble residues were thoroughly washed with EtOAc and the combined filtrates were evaporated. The residue was purified by flash chromatography (hexanes/EtOAc, $4/1 \rightarrow 0/1$) to give disaccharide **18a** and its regioisomer (ratio ca. 9/1). Further purification was performed by preparative HPLC (Nucleodur 100-16-C18/A; MeOH/H₂O = 4/1; flow rate: 35.0 mL/min; pressure: 4.1 MPa) to give pure 18a (432 mg, 55 %) and pure regioisomer (45 mg, 6 %), respectively. Analytical and spectroscopic data of compound **18a**: colorless solid, m.p. = 72-73 °C. $[\alpha]_{D}^{20} = -24.7$ (c = 0.42, CH₂Cl₂); ¹H NMR (400 MHz, CD_2Cl_2): $\delta = 7.33$ (d, J = 8.8 Hz, 2 H), 6.91 (m, 1 H), 6.86 (d, J = 8.8 Hz, 2 H), 5.91 (ddt, J = 17.2, 10.2, 7.1 Hz, 1 H), 5.62 (s, 1 H), 5.24 (d, J = 9.4 Hz, 1 H), 5.11-5.03 (m, 2 H), 4.77 (d, J = 7.7 Hz, 1 H), 4.34-4.29 (m, 2 H), 4.15-4.12 (m, 1 H), 4.01 (dd, J = 5.4, 2.1Hz, 1 H), 3.83-3.50 (m, 9 H), 3.36 (d, J = 2.7 Hz, 1 H), 2.28 (m, 2 H), 1.84-1.78 (m, 6 H), 1.53-1.33 (m, 14 H), 0.91 (t, J = 7.2 Hz, 3 H); ¹³C NMR (100 MHz, CD₂Cl₂): $\delta = 167.7$, 160.5, 138.3, 135.4, 130.1, 128.6, 127.8, 117.0, 113.8, 110.4, 104.4, 101.9, 100.1, 81.0, 79.3, 79.2, 78.4, 77.0, 74.8, 73.5, 69.0, 68.9, 67.3, 55.6, 38.6, 36.9, 28.1, 26.3, 18.6, 16.6, 14.6, 14.2, 12.3; IR (film): $\tilde{\nu} = 3474$, 3072, 2935, 2873, 1718, 1651, 1589, 1518, 1381, 1252, 1175, 1075, 1036, 990, 923, 829; MS (EI): m/z (%): 43 (17), 55 (65), 57 (11), 59 (13), 83

(100), 97 (12), 99 (63), 100 (33), 121 (13), 135 (20), 136 (26), 137 (32), 179 (13), 363 (24), 549 (20); HRMS (EI): m/z: calcd for C₃₅H₅₁O₁₂ [M^+ + H]: 663.33877, found: 663.33806.

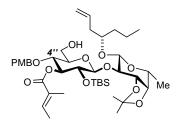
Analytical and spectroscopic data of the regioisomer: m.p. = 67-68 °C. $[\alpha]_{D}^{20} = -7.0$ (c = 0.83, CH₂Cl₂); ¹H NMR (400 MHz, CD₂Cl₂): $\delta = 7.39$ (d, J = 8.8 Hz, 2 H), 6.96 (m, 1 H), 6.89 (d, J = 8.8 Hz, 2 H), 5.90 (ddt, J = 17.2, 10.2, 7.1 Hz, 1 H), 5.51 (s, 1 H), 5.09-5.01 (m, 3 H), 4.91-4.87 (m, 1 H),

4.31 (dd, J = 10.4, 5.0 Hz, 1 H), 4.25 (d, J = 7.9 Hz, 1 H), 4.00-3.86 (m, 3 H), 3.81-3.71 (m, 4 H), 3.65-3.57 (m, 3 H), 3.48-3.40 (m, 2 H), 2.73 (d, J = 3.8 Hz, 1 H), 2.27 (m, 2 H), 1.86 (m, 3 H), 1.81 (m, 3 H), 1.51-1.29 (m, 13 H), 0.89 (t, J = 7.2 Hz, 3 H); ¹³C NMR (100 MHz, CD₂Cl₂): $\delta = 167.6$, 160.6, 138.6, 135.7, 130.2, 128.6, 127.9, 116.8, 113.9, 109.9, 102.1, 100.3, 100.2, 81.3, 79.8, 79.3, 78.8, 76.8, 75.3, 73.1, 69.1, 68.8, 66.5, 55.6, 38.9, 37.1, 28.0, 26.3, 18.7, 16.7, 14.6, 14.2, 12.3; IR (KBr): $\tilde{\nu} = 3494$, 3074, 2935, 2872, 1722, 1651, 1616, 1589, 1519, 1303, 1174, 921, 830; MS (EI): m/z (%): 549 (8), 363 (98), 219 (19), 209 (12), 179 (19), 137 (18), 136 (18), 135 (16), 100 (24), 99 (41), 83 (100), 55 (28); HRMS (ESI): m/z: calcd for C₃₅H₅₀O₁₂Na [M^+ + Na]: 685.31945, found: 685.31954.


Compound 18b (n = 3): Prepared analogously from compound **17b** (200 mg, 0.329 mmol) as a colorless solid (167 mg, 73 %). $[\alpha]_D^{20} = -20.7$ (c = 0.73, CHCl₃); ¹H NMR (300 MHz, C₆D₆): $\delta = 7.49$ (m, 2 H), 7.00 (qq, J = 7.0, 1.5 Hz, 1 H), 6.69 (m, 2 H), 6.14 (m, 1 H), 5.71 (t, J = 9.4 Hz, 1 H), 5.26 (s, 1 H), 5.15 (d, J = 5.1 Hz, 1 H), 5.11 (s, 1 H), 4.82 (d, J = 7.5 Hz, 1 H), 4.82 (d, J = 7.5 Hz, 1 H), 4.31 (dd, J = 10.2, 4.9 Hz, 1 H), 4.24 (d, J = 4.2 Hz, 1 H), 3.96-4.03 (m, 1 H), 3.80 (br s, 1 H), 3.69-3.80 (m, 2 H), 3.63 (t, J = 10.6 Hz, 1 H), 3.58 (d, J = 12.3Hz, 1 H), 3.48 (dd, J = 5.3, 2.1 Hz, 1 H), 3.37 (dd, J = 9.7, 4.8 Hz, 1 H), 3.21 (s, 3 H), 3.18 (dd, J = 6.4, 2.1 Hz, 2 H), 1.77 (t, J = 1.2 Hz, 3 H), 1.66-1.74 (m, 1 H), 1.45-1.62 (m, 4 H), 1.39 (s, 3 H), 1.31 (t, J = 6.5 Hz, 10 H), 1.15 (s, 3 H), 0.89 (t, J = 7.5 Hz, 3 H); ¹³C NMR (75 MHz, C₆D₆): δ = 168.1, 161.1, 138.0, 136.4, 131.1, 129.6, 117.5, 114.4, 110.8, 105.6, 102.4, 101.4, 81.8, 80.0, 79.9, 79.6, 77.3, 76.2, 74.6, 69.5, 69.1, 67.8, 55.3, 38.8, 35.6, 32.8, 28.5, 26.9, 25.8, 23.6, 17.4, 14.9, 14.6, 12.9; IR (film): $\tilde{\nu}$ = 3452, 3328, 3078, 3068, 2980, 2932, 2873, 2856, 1717, 1616, 1573, 1518, 1462, 1379, 1302, 1248, 1173, 1137, 1070, 1031, 921, 867, 827, 787, 729, 687; HRMS (EI): *m*/*z*: calcd for C₃₇H₅₅O₁₂ [*M*⁺ + H]: 691.3688, found: 631.3693.

Compound 19a: TBSOTf (87.0 mL, 0.30 mmol) was added to a solution of compound 18a (100 mg, 0.15 mmol) and 2,6-lutidine (69.0 mL, 0.75 mmol) in CH₂Cl₂ (2 mL) and the resulting mixture was stirred for 2 h. Evaporation of the solvent followed by purification of the residue by preparative TLC (hexanes/EtOAc, 4/1) gave product 19a as a colorless solid (112 mg, 96 %). M.p. = 54-55 °C. $[\alpha]_{D}^{20} = -11.7$ (c = 0.72, CH₂Cl₂); ¹H NMR (400 MHz, CD_2Cl_2): $\delta = 7.20$ (d, J = 8.8 Hz, 2 H), 6.78 (m, 1 H), 6.75 (d, J = 8.8 Hz, 2 H), 5.80 (ddt, J =17.2, 10.2, 7.0 Hz, 1 H), 5.34 (s, 1 H), 5.15 (m, 1 H), 5.00-4.93 (m, 3 H), 4.21-4.17 (m, 2 H), 4.06 (dd, J = 6.8, 5.7 Hz, H), 3.89 (dd, J = 5.5, 2.0 Hz, 1 H), 3.73-3.66 (m, 6 H), 3.59-3.50 (m, 3 H), 3.43-3.39 (m, 1 H), 2.18 (m, 2 H), 1.71-1.66 (m, 6 H), 1.43-1.19 (m, 13 H), 0.80 (t, J = 5.0 Hz, 3 H), 0.73 (s, 9 H), -0.02 (s, 3 H), -0.11 (s, 3 H); ¹³C NMR (100 MHz, CD₂Cl₂): $\delta = 167.2, 160.5, 138.1, 135.6, 130.3, 128.8, 127.7, 116.8, 113.8, 110.0, 101.6, 100.6, 100.0, 100$ 80.0, 79.6, 78.4, 77.0, 76.2, 74.8, 74.3, 69.1, 68.9, 66.5, 55.6, 38.8, 36.9, 28.0, 26.4, 25.9, 18.8, 18.3, 16.7, 14.5, 14.2, 12.3, -3.6, -4.8; IR (KBr): $\tilde{\nu} = 3073$, 2958, 2934, 2859, 1724, 1653, 1616, 1519, 1252, 1181, 1085, 923, 837, 779, 671; MS (EI): m/z (%): 719 (10), 663 (12), 477 (7), 283 (13), 211 (18), 183 (18), 179 (21), 158 (10), 157 (79), 136 (17), 135 (13), 121 (35), 99 (23), 97 (19), 83 (100), 73 (29), 59 (14), 55 (79), 43 (14); HRMS (ESI): m/z: calcd for $C_{41}H_{64}O_{12}SiNa [M^+ + Na]$: 799.40593, found: 799.40524.

Compound 19b (n = 3): Prepared analogously as a colorless syrup (143 mg, 93 %). ¹H NMR (400 MHz, C₆D₆): δ = 7.46 (m, 2 H), 7.01 (qq, *J* = 7.0, 1.3 Hz, 1 H), 6.65 (m, 2 H), 6.18 (m, 1 H), 5.75 (dd, *J* = 9.6, 8.6 Hz, 1 H), 5.28 (s, 1 H), 5.19 (d, *J* = 7.3 Hz, 2 H), 5.16 (s, 1 H), 4.44 (d, *J* = 7.3 Hz, 1 H), 4.20-4.28 (m, 2 H), 4.15 (dd, *J* = 10.2, 4.9 Hz, 1 H), 3.94 (dd, *J* = 8.3, 7.3


Hz, 1 H), 3.82 (quint., J = 5.7 Hz, 1 H), 3.52-3.60 (m, 3 H), 3.38-3.44 (m, 1 H), 3.33 (qq, J = 6.5, 1.9 Hz, 1 H), 3.19 (s, 3 H), 2.44-2.48 (m, 2 H), 1.85 (s, 3 H), 1.64-1.75 (m, 1 H), 1.47-1.62 (m, 4 H), 1.39 (dd, J = 7.1, 1.3 Hz, 3 H), 1.36 (d, J = 6.6 Hz, 3 H), 1.33 (s, 3 H), 1.24-1.30 (m, 4 H), 1.22 (s, 3 H), 1.06 (s, 9 H), 0.89 (s, 1 H), 0.52 (br s, 1 H), 0.34 (s, 3 H), 0.26 (s, 3H); ¹³C NMR (100 MHz, C₆D₆): $\delta = 176.4, 167.3, 161.0, 137.8, 136.5, 131.2, 129.9, 117.4, 114.3, 110.4, 102.3, 101.4, 101.0, 80.7, 80.2, 79.9, 79.0, 77.4, 76.4, 75.7, 75.6, 69.5, 69.4, 67.0, 55.2, 39.8, 35.6, 32.8, 28.4, 27.1, 26.7, 26.6, 26.5, 25.8, 23.6, 19.0, 17.5, 14.9, 14.6, 13.0, -2.8, -3.9; IR (film): <math>\tilde{\nu} = 3072, 2955, 2931, 2858, 1721, 1650, 1616, 1519, 1463, 1379, 1303, 1248, 1221, 1173, 1072, 1034, 1003, 923, 855, 834, 778, 728, 671; HRMS (ESI): <math>m/z$: calcd for C₄₃H₆₈O₁₂SiNa [M^+ + Na]: 827.4372, found: 827.4372.

Compounds 20a and 21a (n = 1): Disaccharide **19a** (500 mg, 0.643 mmol) was added to a suspension of freshly activated MS 4 Å (1.7 g) in CH₃CN (15 mL) and the resulting mixture was stirred for 15 min at that temperature. NaBH₃CN (404 mg, 6.43 mmol) was then introduced before the suspension was cooled to 0 °C and TMSCl (0.82 mL, 6.43 mmol) was added. The mixture was quickly warmed to room temperature and stirring was continued for 3 h. The suspension was filtered through Celite, the filtrate diluted with Et₂O, the organic phase washed with sat. aq. NaHCO₃, dried over sodium sulfate, filtered and evaporated. The residue was purified by flash chromatography to give a mixture of the reduction products (308 mg, 62 %, **21a/20a** = 3.5/1). This mixture does not need to be further purified because compound **27** derived thereof can be isolated in pure form by conventional chromatography at the next step (see below). For analytical purposes, however, the regioisomers were separated by preparative HPLC (Nucleodur 100-16-C18/A; MeOH/H₂O = 4/1; flow rate: 35.0 mL/min; pressure: 4.1 MPa) to give product **21a** (210 mg, 42 %) and regioisomer **20a** (24 mg, 5 %), which showed the following spectroscopic and analytical properties:

Compound **21a**: ¹H NMR (400 MHz, CD₂Cl₂): δ = 7.28 (d, *J* = 8.7 Hz, 2 H), 6.92 (m, 1 H), 6.87 (d, *J* = 8.7 Hz, 2 H), 5.90 (ddt, *J* = 17.2, 10.2, 7.1 Hz, 1 H), 5.09-4.99 (m, 3 H), 4.93 (d, *J* = 7.7 Hz, 1 H), 4.54 (d, *J* = 11.5 Hz, 1 H), 4.47 (d, *J* = 11.5 Hz, 1 H), 4.30 (d,

J = 8.1 Hz, 1 H), 4.14 (m, 1 H), 3.98 (dd, J = 5.6, 2.0 Hz, 1 H), 3.85-3.40 (m, 11 H), 2.75 (br s, 1 H), 2.28 (m, 2 H), 1.84-1.71 (m, 6 H), 1.55-1.31 (m, 13 H), 0.89 (t, J = 7.2 Hz, 3 H), 0.81 (s, 9 H), 0.07 (s, 3 H), -0.02 (s, 3 H); ¹³C NMR (100 MHz, CD₂Cl₂): $\delta = 168.6$, 159.7, 138.7, 135.7, 130.4, 129.9, 128.7, 116.8, 114.0, 110.0, 100.1, 99.9, 80.2, 79.3, 78.4, 77.0, 75.9, 74.7, 73.6, 73.3, 71.2, 69.5, 68.9, 55.6, 38.8, 36.9, 28.0, 26.5, 25.9, 18.8, 18.3, 16.8, 14.5, 14.1, 12.2, -3.5, -4.9. HRMS (ESI): m/z: calcd for C₄₁H₆₆O₁₂SiNa [M^+ + Na]: 801.42158, found: 801.42204.

Compound **20a**: ¹H NMR (400 MHz, CD₂Cl₂): δ = 7.13 (d, *J* = 8.8 Hz, 2 H), 6.90 (m, 1 H), 6.82 (d, *J* = 8.8 Hz, 2 H), 5.91 (ddt, *I* = 17.2, 10.2, 7.1 Hz, 1 H), 5.22 (t, *J* = 9.2 Hz, 1 H), 5.11-5.03 (m, 2 H), 4.95 (d, *J* = 7.6 Hz, 1 H), 4.45 (m, 2 H), 4.29 (d, *J* = 8.1 Hz, 1 H), 4.15 (dd, *J* = 6.8, 5.7 H, 1 H), 3.98 (dd, *J* = 5.6, 2.1 Hz, 1 H),

3.84-3.76 (m, 6 H), 3.71-3.65 (m, 2 H), 3.61 (t, J = 9.5 Hz, 1 H), 3.52 (dd, J = 9.0, 7.5 Hz, 1 H), 3.42-3.38 (m, 1 H), 2.28 (m, 2 H), 1.84-1.79 (m, 6 H), 1.65 (br s, 1 H), 1.55-1.32 (m, 13 H), 0.09 (t, J = 7.2 Hz, 3 H), 0.82 (s, 9 H), 0.07 (s, 3 H), -0.03 (s, 3 H); ¹³C NMR (100 MHz, CD₂Cl₂): $\delta = 167.1$, 159.7, 138.26, 135.6, 130.5, 130.1, 129.0, 116.8, 114.0, 110.0, 100.2, 100.1, 80.0, 78.5, 77.5, 77.0, 76.6, 76.3, 75.5, 74.3, 73.8, 69.0, 62.0, 55.5, 38.8, 36.9, 28.1, 26.3, 25.8, 18.7, 18.2, 16.7, 14.6, 14.1, 12.3, -3.6, -4.8.

The assigned regiochemistry was corroborated by acylation of both isomers. The corresponding ring proton H-6,6' (m, 2 H) in **20a** and H-4 (app. t, 1 H) in **21a** showed the expected acylation shifts.

Assembly

Compound 27: Et₃N (43 μ L, 0.305 mmol) and 2,4,6-trichlorobenzoyl chloride (22 mL, 0.139 mmol) were added to a solution of acid **26** (39 mg, 0.139 mmol) in toluene (0.6 mL) and the resulting mixture was stirred for 1.5 h before a solution of the mixture of alcohols **21a** and **20a** (54 mg, 0.0693 mmol) and DMAP (8.0 mg, 0.0693 mmol) in CH₂Cl₂ (0.5 mL) was introduced. Stirring was continued for 3 h before the mixture was filtered through a pad of

silica. The filtrate was evaporated and the residue purified by flash chromatography (hexanes/EtOAc, 6/1) to give product 27 as a colorless oil (56.8 mg, 79 %). $\left[\alpha\right]_{D}^{20} = -4.4$ (c = 0.5, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ = 7.49-7.46 (m, 2 H), 7.26-7.18 (m, 10 H), 6.97-6.94 (m, 2 H), 6.84-6.80 (m, 3 H), 6.31 (s, 1 H), 5.94 (ddt, J = 17.2, 10.2, 7.1 Hz, 1 H), 5.27 (t, J = 9.4 Hz, 1 H), 5.08-4.99 (m, 3 H), 4.90 (d, J = 7.6 Hz, 1 H), 4.41 (d, J = 11.6 Hz, 1 H),4.39 (d, J = 11.6 Hz, 1 H), 4.31 (d, J = 7.7 Hz, 1 H), 4.15 (t, J = 6.1 Hz, 1 H), 3.97-3.90 (m, 2 H), 3.78-3.74 (m, 4 H), 3.66-3.53 (m, 3 H), 3.36-3.34 (m, 2 H), 2.29-2.26 (m, 2 H), 1.76-1.75 (m, 6 H), 1.56-1.24 (m, 11 H), 0.86 (t, J = 7.2 Hz, 3 H), 0.81 (s, 9 H), 0.41 (s, 3 H), 0.26 (s, 3 H) H), 0.04 (s, 3 H), -0.06 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 166.9$, 165.8, 164.8, 159.0, 144.7, 138.3, 137.9, 135.4, 133.9, 132.9, 130.3, 129.4, 128.6, 128.3, 127.8, 127.4, 126.8, 126.6, 116.5, 113.6, 109.7, 100.2, 99.8, 79.6, 78.7, 76.4, 76.0, 75.3, 73.6, 73.3, 73.1, 69.9, 68.5, 68.4, 55.2, 38.5, 36.6, 27.7, 26.3, 25.7, 18.3, 18.0, 16.7, 14.3, 14.1, 12.0, -0.8, -1.5, -3.9, -5.0; IR (film): $\tilde{\nu} = 3070, 2956, 2932, 2904, 2858, 1730, 1652, 1612, 1587, 1513, 1248,$ 1160, 1074, 915, 839, 780, 701; MS (EI): m/z (%): 83 (14), 121 (100), 157 (9), 265 (30), 565 (4), 985 (2); HRMS (ESI): m/z: calcd for C₅₈H₈₂O₁₃Si₂Na [M^+ + Na]: 1065.51862, found: 1065.51779.

Compound 54: A solution of disaccharide **19** (138 mg, 0.171 mmol) in MeCN (1 mL) was added to a suspension of freshly activated MS 4 Å (466 mg) in MeCN (2.5 mL) and the resulting mixture was stirred for 10 min before NaBH₃CN (108 mg, 1.71 mmol) was introduced. The resulting suspension was stirred at 0 °C for 5 min before TMSCI (220 μ L, 1.71 mmol) was added. Immediately after the addition, the mixture was warmed to room temperature and stirring was continued for 1.5 h. The suspension was filtered through Celite, the filtrate was diluted with Et₂O, the organic phase was washed with sat. aq. NaHCO₃, dried over MgSO₄ and evaporated, and the residue was purified by flash chromatography (hexanes/EtOAc, 10:1) to give a mixture of products **21b** and **20b** (n = 3, 70 mg, 51 %, ratio ca. 4:1).

NEt₃ (53 μ L, 0.381 mmol) and 2,4,6-trichlorobenzovl chloride (27 μ L, 0.173 mmol) were added to a solution of acid 26 (49 mg, 0.173 mmol) in toluene (770 µL) and the mixture was stirred for 1.5 h before a solution of the isomeric alcohols **20b** and **21b** (70 mg, 0.0867 mmol) in CH₂Cl₂ (650 µL) and DMAP (10.6 mg, 0.0867 mmol) were successively added. Stirring was continued for 14 h before the mixture was filtered through a pad of silica which was carefully rinsed with EtOAc. The combined filtrates was evaporated and the residue purified by flash chromatography (hexanes/EtOAc, 12.1) to give product 54 as a colorless oil (67 mg, 72 %); ¹H NMR (400 MHz, CDCl₃): δ = 7.49-7.46 (m, 2 H), 7.25-7.20 (m, 10 H), 6.97-6.95 (m, 2 H), 6.84-6.82 (m, 3 H), 6.31 (s, 1 H), 5.99-5.92 (m, 1 H), 5.27 (t, J = 9.4 Hz, 1 H), 5.08-5.00 (m, 3 H), 4.91 (d, J = 7.6 Hz, 1 H), 4.41 (q, J = 11.6 Hz, 2 H), 4.31 (d, J = 7.7 Hz, 1 H), 4.16 (t, J = 6.1 Hz, 1 H), 3.97-3.91 (m, 2 H), 3.78-375 (m, 4 H), 3.65-3.53 (m, 3 H), 3.36-3.35 (m, 2 H), 2.30-2.27 (m, 2 H), 1.76-1.75 (m, 6 H), 1.54-1.24 (m, 15 H), 0.87 (t, J = 7.2 Hz, 3 H), 0.81 (s, 9 H), 0.42 (s, 3 H), 0.26 (s, 3 H), 0.05 (s, 3 H), -0.05 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ = 166.9, 165.8, 164.8, 159.0, 144.7, 138.3, 137.7, 135.4, 134.0, 132.8, 130.2, 129.4, 128.6, 127.7, 127.4, 126.7, 126.5, 116.5, 113.5, 109.7, 100.3, 99.7, 79.6, 78.7, 76.3, 76.0, 75.4, 73.6, 73.3, 73.1, 69.9, 68.5, 68.4, 55.3, 38.5, 36.5, 32.1, 27.7, 26.3, 25.7, 24.7, 22.7, 18.0, 16.6, 14.3, 14.1, 12.0, -0.8, -1.5, -3.8, -5.0; IR (film): $\tilde{\nu} = 2934$, 2858, 1731, 1651, 1613, 1588, 1514, 1246, 1160, 1069, 921, 838, 778; HRMS (ESI): m/z: calcd for $C_{60}H_{86}O_{13}Si_2Na [M^+ + Na]: 1093.5507$, found: 1093.5499.

Synthesis of 29: DDQ (49.0 mg, 0.216 mmol) was added to a solution of compound 27 (150 mg, 0.144 mmol) in CH₂Cl₂ (6.0 mL) and water (0.3 mL). The mixture was stirred for 16 h before it was filtered through a pad of silica which was carefully rinsed with ethyl acetate. The combined filtrates were evaporated and the residue was purified by flash chromatography (hexanes/EtOAc, 6/1) to give alcohol 28 (150 mg) which contained *p*-methoxybenzaldehyde as an inseparable impurity.

Et₃N (45 µL, 0.318 mmol) and 2,4,6-trichlorobenzovl chloride (23 µL, 0.148 mmol) were added to a solution of 4-oxo-8-nonenoic acid (25 mg, 0.0862 mmol)^{6,7} in toluene (1.0 mL) and the mixture was stirred for 1.5 h before a solution of the crude alcohol 28 (75 mg, ca. 0.074 mmol) and DMAP (9.0 mg, 0.074 mmol) in toluene (1.5 mL) was introduced. Stirring was continued for 2 h, the mixture was passed through a pad of silica which was carefully rinsed with EtOAc, the combined filtrates were evaporated, and the residue was purified by flash chromatography (hexanes/EtOAc, 8/1) to give disaccharide 29 as a colorless syrup (61.7 mg, 78 %). $[\alpha]_{D}^{20} = -4.2 \ (c = 0.43, \text{CH}_2\text{Cl}_2); \ ^1\text{H NMR} \ (400 \text{ MHz}, \text{CDCl}_3): \ \delta = 7.47-7.44 \ (m, 2)$ H), 7.28-7.18 (m, 6 H), 6.98-6.95 (m, 2 H), 6.81 (m, 1 H), 6.33 (s, 1 H), 5.93 (ddt, J = 17.1, 10.1, 7.1 Hz, 1 H), 5.77 (ddt, J = 17.0, 10.3, 6.4 Hz, 1 H), 5.27 (t, J = 9.4 Hz, 1 H), 5.08-4.96 (m, 5 H), 4.94 (d, J = 7.6 Hz, 1 H), 4.28 (d, J = 7.8 Hz, 1 H), 4.14 (t, J = 5.9 Hz, 1 H), 4.01-3.99 (m, 2 H), 3.97 (dd, J = 5.6, 2.0 Hz, 1 H), 3.89-3.85 (m, 1 H), 3.77 (m, 1 H), 3.68-3.61(m, 2 H), 3.55 (dd, J = 9.1, 7.6 Hz, 1 H), 2.67-2.42 (m, 6 H), 2.27 (m, 2 H), 2.09-2.03 (m, 2 H), 1.77-1.75 (m, 6 H), 1.59-1.34 (m, 15 H), 0.89 (t, *J* = 7.2 Hz, 3 H), 0.81 (s, 9 H), 0.39 (s, 3 H), 0.27 (s, 3 H), 0.04 (s, 3 H), -0.06 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ = 208.6, 172.4, 166.9, 166.6, 164.7, 144.7, 138.2, 138.0, 135.4, 133.8, 132.6, 128.7, 128.2, 127.9, 127.6, 126.9, 126.6, 116.5, 115.3, 109.7, 100.3, 99.8, 79.7, 79.1, 77.2, 76.5, 76.0, 75.2, 73.2, 71.5, 69.4, 68.6, 63.0, 41.9, 38.6, 37.1, 36.7, 33.1, 28.0, 27.8, 26.4, 25.7, 22.8, 18.3, 18.0, 16.7, 14.4, 14.1, 12.1, -0.7, -1.4, -3.8, -4.9; IR (film): $\tilde{\nu} = 3071, 2956, 2933, 1732, 1651, 1588,$ 1248, 1157, 914, 839, 780, 730, 701; MS (EI): m/z (%): 83 (68), 157 (29), 265 (100), 393 (30), 775 (9), 793 (42), 961 (13), 1017 (7); HRMS (ESI): m/z: calcd for C₅₉H₈₆O₁₄Si₂Na [M^+ + Na]: 1097.54483, found: 1097.54416.

Diene 35: Prepared analogously from 8-nonenoic acid (33 mg, 0.212 mmol) and crude alcohol **28** (112 mg, 0.106 mmol) as a colorless syrup (81 mg, 72 %). $[\alpha]_{D}^{20} = -10.8$ (c = 0.32,

⁶ Prepared by reaction of 4-pentenylmagnesium bromide with succinic anhydride, cf. G. Lhommet, S. Fréville, V. Thuy, H. Petit, J. P. Célérier, *Synth. Commun.* **1996**, *26*, 3897-3901. It was found that the reaction is cleaner in the presence of Fe(acac)₃ (10 mol%) in THF at -78 °C, even though the unoptimized yield was only 41 %. For iron catalyzed formations of functionalized ketones, see: B. Scheiper, M. Bonnekessel, H. Krause, A. Fürstner, *J. Org. Chem.* **2004**, *69*, 3943-3949.

⁷ D. M. Hodgson, P. A. Stupple, F. Y. T. M. Pierard, A. H. Labande, C. Johnstone, *Chem. Eur. J.* 2001, *7*, 4465-4476.

CH₂Cl₂); ¹H NMR (400 MHz, CD₂Cl₂): $\delta = 7.48-7.45$ (m, 2 H), 7.29-7.19 (m, 6 H), 6.99-6.97 (m, 2 H), 6.82 (m, 1 H), 5.90 (ddt, J = 17.2, 10.2, 6.8 Hz, 1 H), 5.82 (ddt, J = 17.2, 10.2, 6.8 Hz, 1 H), 5.25 (t, J = 9.3 Hz, 1 H), 5.10-4.91 (m, 6 H), 4.30 (d, J = 8.1 Hz, 1 H), 4.16-3.98 (m, 4 H), 3.82-3.77 (m, 2 H), 3.71-3.66 (m, 2 H), 3.60 (dd, J = 9.0, 7.8 Hz, 1 H), 2.30-2.25 (m, 4 H), 2.07-2.02 (m, 2 H), 1.78-1.75 (m, 6 H), 1.61-1.29 (m, 22 H), 0.90 (t, J = 7.3 Hz, 3 H), 0.81 (s, 9 H), 0.36 (s, 3 H), 0.29 (s, 3 H), 0.07 (s, 3 H), -0.04 (s, 3 H); ¹³C NMR (100 MHz, CD₂Cl₂): $\delta = 173.5$, 167.1, 166.8, 165.0, 145.1, 139.6, 138.7, 138.7, 135.6, 134.2, 133.0, 129.0, 128.9, 128.6, 128.2, 127.8, 127.2, 126.9, 116.8, 114.3, 110.0, 100.1, 80.2, 78.6, 77.1, 76.4, 75.7, 73.5, 72.1, 69.5, 69.0, 62.6, 38.8, 36.9, 34.2, 34.1, 29.4, 29.2, 29.1, 28.2, 26.4, 25.8, 25.0, 18.8, 18.2, 16.7, 14.6, 14.2, 12.2, -0.7, -1.1, -3.6, -4.8; IR (film): $\tilde{\nu} = 2930$, 2858, 1732, 1580, 1428, 1380, 1320, 1247, 1221, 1152, 1111, 1072, 1038, 911, 885, 837, 778, 730, 699; MS (EI): m/z (%): 83 (84), 99 (13), 157 (34), 211 (10), 265 (100), 379 (25), 761 (8), 779 (53), 947 (20), 1003 (12); HRMS (ESI): m/z: calcd for C₅₉H₈₈O₁₃Si₂Na [M^+ + Na]: 1083.56557, found: 1083.56558.

Diene 45: DDQ (19.0 mg, 0.0830 mmol) was added to a solution of compound **27** (57.7 mg, 0.0553 mmol) in CH₂Cl₂ (2.0 mL) and water (0.1 mL), and the resulting mixture was stirred at ambient temperature for 16 h. The suspension was then filtered through a pad of silica which was rinsed with ethyl acetate, the combined filtrates were evaporated, and the residue was purified by flash chromatography (hexanes/EtOAc, 6/1) to give alcohol **28** (45.6 mg) which contained traces of *p*-methoxybenzaldehyde.

Et₃N (26 μ L, 0.185 mmol) and 2,4,6-trichlorobenzoyl chloride (13 mL, 0.0862 mmol) were added to a solution of acid **44** (19.7 mg, 0.0862 mmol) in toluene (0.5 mL). After stirring for 1.5 h at ambient temperature, a solution of the crude alcohol **28** (45.6 mg) and DMAP (5.0 mg, 0.0431 mmol) in toluene (1.0 mL) was introduced and stirring continued for 2 h. The mixture was filtered through a pad of silica which was carefully rinsed with EtOAc, the combined filtrates were evaporated and the residue was purified by flash chromatography (hexanes/EtOAc, 8/1) to give product **45** as a colorless syrup (54.6 mg, 87 % over both steps). $[\alpha]_{D}^{20} = -3.7 \ (c = 0.40, CH_2Cl_2); {}^{1}H NMR (400 MHz, CD_2Cl_2): \delta = 7.47-7.45 (m, 2 H), 7.29-7.19 (m, 6 H), 7.00-6.97 (m, 2 H), 6.82 (m, 1 H), 6.33 (s, 1 H), 5.89 (ddt,$ *J*= 17.2, 10.2, 6.9 Hz, 1 H), 5.81 (ddt,*J*= 17.0, 10.3, 6.6 Hz, 1 H), 5.25 (t,*J*= 9.4 Hz, 1 H), 5.10-4.99 (m, 7 H), 4.30 (d,*J*= 8.1 Hz, 1 H), 4.16-4.03 (m, 3 H), 3.99 (dd,*J*= 5.5, 1.9 Hz, 1 H), 3.82-3.65 (m, 4 H), 3.60 (m, 1 H), 2.83-2.47 (m, 4 H), 2.28 (m, 2 H), 2.18-2.11 (m, 5 H), 1.96-1.74 (m, 8 H), 1.55-1.32 (m, 13 H), 0.90 (t,*J* $= 7.2 Hz, 3 H), 0.81 (s, 9 H), 0.37 (s, 3 H), 0.28 (s, 3 H), 0.07 (s, 3 H), -0.04 (s, 3 H); {}^{13}C NMR (100 MHz, CD_2Cl_2): \delta = 205.8, 172.4, 170. 7, 167.1, 166.9, 165.0, 145.1, 138.7, 137.5, 135.6, 134.2, 133.0, 129.0, 128.5, 128.2, 127.9, 127.2, 126.9, 116.8, 115.9, 110.0, 100.1, 100.0, 80.2, 78.6, 78.0, 77.1, 76.4, 75.6, 73.5, 72.0, 69.6, 69.0, 63.1, 38.8, 36.9, 33.7, 33.6, 30.1, 29.6, 28.2, 27.5, 26.4, 25.8, 20.8, 18.8, 18.2, 16.7, 14.6, 14.2, 12.2, -0.7, -1.2, -3.6, -4.8; IR (film): <math>\tilde{\nu} = 3072, 2956, 2932, 2858, 1732, 1651, 1642, 1586, 1428, 1248, 1113, 916, 839, 780; MS (EI):$ *m/z*(%): 83 (63), 157 (29), 265 (100), 265 (100), 451 (32), 833 (10), 851 (49), 1019 (17), 1075 (8); HRMS (ESI):*m/z*: calcd for C₆₁H₈₈O₁₆Si₂Na [*M*⁺ + Na]: 1155.55032, found: 1155.54897.

Diene 50: Prepared analogously from carboxylic acid **49** (100 mg, 0.33 mmol) and crude alcohol **28** (231 mg, 0.25 mmol) as a colorless syrup (220 mg, 73 %). $[\alpha]_D^{20} = -6.2$ (c = 1.01, CH₂Cl₂). ¹H NMR (400 MHz, CD₂Cl₂): $\delta = 7.47$ -7.45 (m, 2 H), 7.30-7.19 (m, 9 H), 6.99-6.92 (m, 3 H), 6.88 (m, 1 H), 6.33 (s, 1 H), 5.91 (ddt, J = 17.2, 10.2, 7.0 Hz, 1 H), 5.79 (ddt, J = 17.0, 10.3, 6.6 Hz, 1 H), 5.26 (t, J = 9.3 Hz, 1 H), 5.10-4.96 (m, 6 H), 4.54 (d, J = 11.1 Hz, 1 H), 4.35 (d, J = 11.1 Hz, 1 H), 4.31 (d, J = 8.1 Hz, 1 H), 4.16 (dd, J = 6.4, 5.9 Hz, 1 H), 4.08-4.05 (m, 2 H), 3.99 (dd, J = 5.6, 1.9 Hz, 1 H), 3.86-3.78 (m, 6 H), 3.73-3.66 (m, 2 H), 3.61 (dd, J = 9.0, 7.8 Hz, 1 H), 2.91-2.51 (m, 4 H), 2.31-2.28 (m, 2 H), 2.21-2.09 (m, 2 H), 1.77-1.33 (m, 21 H), 0.91 (t, J = 7.2 Hz, 3 H), 0.82 (s, 9 H), 0.37 (s, 3 H), 0.29 (s, 3 H), 0.08 (s, 3 H), -0.03 (s, 3 H); ¹³C NMR (100 MHz, CD₂Cl₂): $\delta = 211.0$, 172.7, 167.2, 166.9, 165.1, 159.9, 145.2, 138.7, 138.6, 138.2, 135.7, 134.2, 133.0, 130.4, 130.0, 129.0, 128.6, 128.2, 127.9, 127.2, 127.0, 116.8, 115.5, 114.2, 110.1, 100.2, 100.1, 84.1, 80.2, 78.7, 77.1, 76.5, 75.7, 73.5, 72.4, 72.1, 69.7, 69.0, 63.2, 55.6, 38.9, 37.0, 33.1, 31.9, 29.8, 28.3, 27.6, 26.5, 25.9, 18.8, 18.3, 16.8, 14.6, 14.2, 12.2, -0.7, -1.1, -3.6, -4.8; IR (film): $\tilde{\nu} = 3072$, 2955,

2933, 2858, 1731, 1514, 1249, 1156, 1112, 1074, 1039, 915, 839, 818, 780, 730, 701; MS (EI): m/z (%): 83 (42), 121 (100), 157 (19), 211 (6), 265 (71), 529 (10), 911 (2), 929 (8), 1097 (3); HRMS (ESI): m/z: calcd for C₆₇H₉₄O₁₆Si₂Na [M^+ + Na]: 1233.59726, found: 1233.59623.

Compound 56: Prepared analogously as a colorless oil (72 mg, 83 % over both steps). ¹H NMR (400 MHz, CDCl₃): δ = 47-7.45 (m, 2 H), 7.27-7.20 (m, 6 H), 6.98-6.96 (m, 2 H), 6.82-6.81 (m, 1 H), 6.33 (s, 1 H), 5.99-5.89 (m, 1 H), 5.82-5.72 (m, 1 H), 5.28 (t, *J* = 9.4 Hz, 1 H), 5.09-4.96 (m, 5 H), 4.94 (d, *J* = 7.6 Hz, 1 H), 4.28 (d, *J* = 7.8 Hz, 1 H), 4.15 (t, *J* = 5.9 Hz, 1 H), 4.01-3.99 (m, 2 H), 3.97 (dd, *J* = 5.6, 2.0 Hz, 1 H), 3.89-3.86 (m, 1 H), 3.80-3.75 (m, 1 H), 3.69-3.60 (m, 2 H), 3.55 (dd, *J* = 9.1, 7.6 Hz, 1 H), 2.69-2.42 (m, 6 H), 2.29-2.26 (m, 2 H), 2.09-2.03 (m, 2 H), 1.77-1.75 (m, 6 H), 1.71-1.31 (m, 19 H), 0.89 (t, *J* = 7.2 Hz, 3 H), 0.81 (s, 9 H), 0.39 (s, 3 H), 0.28 (s, 3 H), 0.05 (s, 3 H), -0.05 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ = 208.7, 172.3, 166.8, 166.5, 164.8, 144.7, 138.1, 137.9, 135.4, 133.8, 132.5, 128.6, 128.1, 127.8, 127.5, 126.8, 126.5, 116.4, 115.3, 109.8, 100.4, 99.8, 79.7, 79.6, 77.2, 76.4, 76.0, 75.2, 73.3, 71.5, 69.5, 68.5, 63.0, 41.8, 38.5, 37.2, 34.5, 33.2, 31.8, 28.0, 27.7, 26.3, 25.6, 24.7, 22.7, 22.6, 18.0, 16.7, 14.3, 14.1, 12.0, -0.6, -1.4, -3.8, -4.9; IR (film): $\tilde{\nu}$ = 2930, 2857, 1731, 1651, 1588, 1428, 1380, 1320, 1247, 1153, 1111, 1073, 1039, 913, 838, 816, 779, 730, 700; HRMS (ESI): *m*/*z*: calcd for C₆₁H₉₀O₁₄Si₂Na [*M*⁺ + Na]: 1125.5756, found: 1125.5761.

Macrocyclization/hydrogenation sequence

Compound 32: Complex **30** (5.0 mg, 0.00558 mmol) was added to a solution of diene **29** (60 mg, 0.0558 mmol) in CH₂Cl₂ (10 mL) and the resulting mixture was stirred under reflux for 4 h before the reaction was quenched with ethyl vinyl ether. Evaporation of all volatile materials followed by flash chromatography of the residue (hexanes/EtOAc, 4/1) gave the corresponding metathesis product **31** as a mixture of (*E*)- and (*Z*)-isomers.

A solution of cycloalkene **31** (42 mg, 0.0398 mmol) and RhCl(PPh₃)₃ (7.0 mg, 0.0076 mmol) in EtOH (0.6 mL) was stirred under an atmosphere of H_2 (1 atm) overnight. Evaporation of

the solvent and flash chromatography of the crude product (hexanes/EtOAc, 4/1) gave compound **32** as a colorless oil (34 mg, 81 %). $[\alpha]_D^{20} = +0.6$ (c = 0.50, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.46$ -7.45 (m, 2 H), 7.28-7.17 (m, 6 H), 6.97-6.95 (m, 2 H), 6.86 (m, 1 H), 6.31 (s, 1 H), 5.27 (t, J = 9.3 Hz, 1 H), 5.08 (t, J = 9.8 Hz, 1 H), 4.93 (d, J = 7.7 Hz, 1 H), 4.27 (d, J = 7.8 Hz, 1 H), 4.20-4.13 (m, 2 H), 4.00-3.97 (m, 2 H), 3.87 (dd, J = 7.7, 6.6 Hz, 1 H), 3.78 (m, 1 H), 3.63 (m, 1 H), 3.54 (dd, J = 9.0, 7.8 Hz, 1 H), 3.51 (m, 1 H), 2.81-2.73 (m, 1 H), 2.58-2.31 (m, 5 H), 1.79-1.24 (m, 29 H), 0.90 (t, J = 7.3 Hz, 3 H), 0.81 (s, 9 H), 0.37 (s, 3 H), 0.24 (s, 3 H), 0.05 (s, 3 H), -0.04 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 209.6$, 171.4, 166.8, 166.3, 164.4, 144.7, 138.4, 138.2, 133.8, 132.7, 128.6, 128.2, 127.8, 127.5, 126.8, 126.6, 109.7, 101.5, 99.8, 82.0, 79.4, 76.5, 76.4, 75.6, 73.1, 71.7, 68.4, 68.3, 61.7, 42.3, 37.3, 37.0, 33.7, 28.7, 28.3, 28.0, 27.8, 26.3, 25.7, 24.0, 23.7, 18.4, 18.0, 16.8, 14.4, 14.3, 12.1, -0.5, -1.6, -3.8, -4.9; IR (film): $\tilde{\nu} = 3069$, 2932, 2858, 1733, 1652, 1588, 1248, 1155, 1074, 839, 780, 730, 701; MS (EI): m/z (%): 83 (91), 157 (29), 265 (100), 349 (13), 767 (36), 991 (9); HRMS (ESI): m/z: calcd for C₅₇H₈₄O₁₄Si₂Na [M^+ + Na]: 1071.52919, found: 1071.53009.

Compound 36: Prepared analogously from diene **35** (51 mg, 0.0484 mmol) as a colorless solid (37 mg). $[\alpha]_{D}^{20} = +3.5$ (c = 0.52, CH₂Cl₂); ¹H NMR (400 MHz, CD₂Cl₂): $\delta = 7.48-7.46$ (m, 2 H), 7.28-7.18 (m, 6 H), 6.98-6.96 (m, 2 H), 6.83 (m, 1 H), 6.32 (s, 1 H), 5.26 (t, J = 9.6 Hz, 1 H), 5.17 (t, J = 9.6 Hz, 1 H), 5.03 (d, J = 8.0 Hz, 1 H), 4.26-4.22 (m, 2 H), 4.18-4.13 (m, 2 H), 3.99 (dd, J = 2.0, 5.7 Hz, 1 H), 3.81 (dd, J = 6.6, 8.1 Hz, 1 H), 3.78 (m, 1 H), 3.69 (m, 1 H), 3.56 (dd, J = 7.8, 8.9 Hz, 1 H), 3.51-3.49 (m, 1 H), 2.27-2.22 (m, 2 H), 1.78-1.27 (m, 35 H), 0.91 (t, J = 7.2 Hz, 3 H), 0.82 (s, 9 H), 0.34 (s, 3 H), 0.27 (s, 3 H), 0.08 (s, 3 H), -0.03 (s, 3 H); ¹³C NMR (125 MHz, CD₂Cl₂): $\delta = 173.2$, 167.2, 166.5, 164.6, 145.3, 138.9, 138.6, 134.3, 133.1, 128.9, 128.6, 128.2, 127.8, 127.1, 127.0, 110.0, 102.3, 100.1, 82.7, 80.2, 76.9, 76.1, 73.6, 72.3, 68.8, 61.3, 38.0, 34.6, 30.1, 29.0, 28.6, 28.3, 28.0, 27.9, 26.4, 25.8, 24.7, 24.4, 18.7, 18.3, 16.9, 14.6, 14.4, 12.2, -0.7, -1.3, -3.5, -4.8; IR (film): $\tilde{\nu} = 2929$, 2858, 1732, 1246, 1150, 1071, 1037, 837, 778, 729, 698. MS (EI): m/z (%): 83 (90), 135 (10), 157 (32), 205 (11), 265 (100), 335 (10), 409 (7), 495 (7), 595 (6), 753 (43), 977 (11); HRMS (ESI): m/z: calcd for C₅₇H₈₆O₁₃Si₂Na [M^+ + Na]: 1057.54992, found: 1057.55069.

Compound 46: Prepared analogously from diene **45** (74 mg, 0.0653 mmol) as a colorless syrup (60 mg, 83 %). $[\alpha]_{D}^{20} = +0.4$ (c = 0.77, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.46$ -7.44 (m, 2 H), 7.29-7.19 (m, 6 H), 6.99-6.97 (m, 2 H), 6.81 (m, 1 H), 6.31 (s, 1 H), 5.28 (t, J = 9.2 Hz, 1 H), 5.06-5.00 (m, 2 H), 4.94 (d, J = 7.7 Hz, 1 H), 4.25 (d, J = 7.8 Hz, 1 H), 4.13 (t, J = 6.0 Hz, 1 H), 4.03-4.02 (m, 1 H), 3.98 (dd, J = 5.8, 2.0 Hz, 1 H), 3.86 (dd, J = 7.8, 6.4 Hz, 1 H), 3.78 (m, 1 H), 3.65 (dt, J = 10.0, 2.7 Hz, 1 H), 3.54-3.48 (m, 2 H), 2.87 (dt, J = 18.8, 6.8 Hz, 1 H), 2.49 (m, 2 H), 2.14 (s, 3 H), 1.77-1.26 (m, 30 H), 0.09 (t, J = 7.3 Hz, 3 H), 0.81 (s, 9 H), 0.37 (s, 3 H), 0.23 (s, 3 H), 0.05 (s, 3 H), -0.04 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 205.9$, 170.9, 170.6, 166.8, 166.6, 164.4, 144.6, 138.3, 138.0, 133.6, 132.5, 128.7, 128.2, 127.9, 127.6, 126.9, 126.6, 109.7, 101.3, 99.7, 81.9, 79.4, 78.4, 77.2, 76.3, 75.4, 73.1, 71.6, 68.5, 68.3, 61.8, 37.3, 33.9, 33.8, 29.9, 28.5, 28.0, 27.8, 26.3, 25.6, 24.2, 20.6, 18.3, 18.0, 16.8, 14.4, 14.3, 12.1, -0.4, -1.6, -3.8, -4.9; IR (film): $\tilde{\nu} = 3069, 2931, 2858, 1732, 1652, 1588, 1379, 1371, 1247, 1155, 1074, 839, 780, 731, 702; MS (EI): <math>m/z$ (%): 83 (66), 157 (26), 265 (100), 567 (11), 825 (41), 1049 (9); HRMS (ESI): m/z: calcd for C₅₉H₈₆O₁₆Si₂Na [M^+ + Na]: 1129.53466, found: 1129.53524.

Compound 51: Prepared analogously from diene **50** (133 mg, 0.11 mmol) as a colorless solid (99.6 mg). $[\alpha]_D^{20} = -3.3$ (c = 0.89, CH₂Cl₂); ¹H NMR (400 MHz, CD₂Cl₂): $\delta = 7.49$ -7.47 (m, 2 H), 7.30-7.19 (m, 8 H), 7.00-6.97 (m, 2 H), 6.90-6.85 (m, 3 H), 6.31 (s, 1 H), 5.25 (t, J = 9.5 Hz, 1 H), 5.13 (t, J = 9.8 Hz, 1 H), 4.97 (d, J = 7.8 Hz, 1 H), 4.51 (d, J = 11.6 Hz, 1 H), 4.36 (d, J = 11.6 Hz, 1 H), 4.26-4.22 (m, 2 H), 4.15 (t, J = 6.1 Hz, 1 H), 3.98 (dd, J = 5.8, 2.0 Hz, 1 H), 3.80 (s, 3 H), 3.79-3.75 (m, 4 H), 3.68 (m, 1 H), 3.53 (dd, J = 9.0, 7.8 Hz, 1 H), 3.51-3.47 (m, 1 H), 3.04 (ddd, J = 19.2, 8.9, 5.6 Hz, 1 H), 2.64 (dt, J = 19.2, 5.7 Hz, 1 H), 2.44 (ddd, J = 16.6, 8.9, 5.5 Hz, 1 H), 2.17 (dt, J = 16.6, 5.7 Hz, 1 H), 1.77-1.25 (m, 29 H), 0.90 (t, J = 7.2 Hz, 3 H), 0.82 (s, 9 H), 0.38 (s, 3 H), 0.23 (s, 3 H), 0.08 (s, 3 H), -0.01 (s, 3 H); ¹³C NMR (125 MHz, CD₂Cl₂): $\delta = 211.6$, 171.6, 167.1, 166.8, 164.7, 159.9, 145.3, 139.0, 138.8, 134.2, 133.1, 130.4, 129.9, 129.0, 128.6, 128.2, 127.9, 127.2, 127.0, 114.2, 110.0, 102.3, 100.4, 84.5, 82.7, 80.1, 77.3, 76.9, 76.0, 73.5, 72.3, 68.8, 68.7, 62.1, 62.1, 55.6, 37.9, 34.1, 33.4, 31.9, 29.0, 28.6, 28.0, 26.4, 25.9, 24.8, 24.6, 18.7, 18.3, 16.9, 14.6, 14.4, 12.3, -0.2, -1.6, -3.4, -

4.7; IR (film): $\tilde{v} = 2933$, 2859, 1732, 1652, 1612, 1587, 1513, 1248, 1155, 1074, 1038, 839, 818, 780, 730, 701; MS (EI): m/z (%): 83 (32), 121 (100), 157 (12), 211 (1), 265 (52), 323 (2), 645 (2), 903 (5), 1127 (2); HRMS (ESI): m/z: calcd for C₆₅H₉₂O₁₆Si₂Na [M^+ + Na]: 1207.58162, found: 1207.58256.

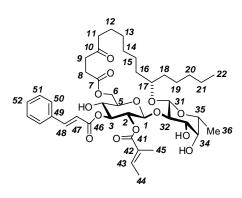
Compound 57: Prepared analogously from diene **56** (72 mg, 0.065 mmol) as a colorless solid (57 mg, 81 % over two steps). $[\alpha]_{D}^{20} = + 1.2 (c = 1, CHCl_3)$; ¹H NMR (400 MHz, CDCl_3): $\delta =$ 7.47-7.45 (m, 2 H), 7.28-7.18 (m, 6 H), 6.97-6.95 (m, 2 H), 6.87-6.85 (m, 1 H), 6.31 (s, 1 H), 5.28 (t, J = 9.3 Hz, 1 H), 5.08 (t, J = 9.8 Hz, 1 H), 4.93 (d, J = 7.7 Hz, 1 H), 4.26 (d, J = 7.8 Hz, 1 H), 4.21-4.11 (m, 2 H), 4.00-3.97 (m, 2 H), 3.90-3.86 (m, 1 H), 3.80-3.77 (m, 1 H), 3.65-3.62 (m, 1 H), 3.56-3.52 (m, 1 H), 3.52-3.47 (m, 1 H), 2.82-2.74 (m, 1 H), 2.58-2.33 (m, 5 H), 1.79-1.78 (m, 6 H), 1.71-1.24 (m, 27 H), 0.89 (t, J = 7.3 Hz, 3 H), 0.82 (s, 9 H), 0.37 (s, 3 H), 0.24 (s, 3 H), 0.06 (s, 3 H), -0.03 (s, 3 H); ¹³C NMR (100 MHz, CDCl_3): $\delta = 209.5$, 171.3, 166.7, 166.3, 164.3, 144.6, 138.4, 138.1, 133.7, 132.6, 128.6, 128.2, 127.8, 127.5, 126.8, 126.5, 109.6, 101.5, 99.7, 82.4, 79.4, 76.4, 76.3, 75.6, 73.1, 71.6, 68.4, 68.3, 61.6, 42.2, 36.9, 35.0, 33.7, 32.0, 28.6, 28.2, 27.9, 27.7, 26.2, 25.6, 24.7, 24.0, 23.6, 22.5, 17.9, 16.7, 14.4, 14.0, 12.1, -0.5, -1.6, -3.8, -4.9; IR (film): $\tilde{\nu} = 2931$, 2858, 1732, 1652, 1587, 1458, 1380, 1321, 1247, 1153, 1073, 1038, 838, 816, 779, 730, 700; HRMS (ESI): m/z: calcd for C₅₉H₈₈O₁₄Si₂Na [M^+ + Na]: 1099.5599, found: 1099.5604.

Completion of the total syntheses

Ipomoeassin B (2). A solution of TASF (79 mg, 0.286 mmol) in MeCN (2.0 mL) was added to a solution of compound **32** (30 mg, 0.0286 mmol) in wet MeCN (1.5 mL). After stirring for 4 h, the mixture was filtered through a pad of silica which was carefully rinsed with EtOAc, the combined filtrates were evaporated, and the residue was treated with trifluoroacetic acid (16 μ L, 215 mmol) in CH₂Cl₂ (2.0 mL). After stirring for 3 h, the solution was neutralized with Et₃N, the solvent was evaporated, and the residue purified by flash chromatography (CH₂Cl₂/MeOH, 20/1) to afford Ipomoeassin B (**2**) as a colorless syrup which solidifies when kept in the freezer (10 mg, 45 %). $[\alpha]_D^{25} = -48.0 \ (c = 0.36, \text{EtOH}); \text{ lit.}^8 \ [\alpha]_D^{25} = -39 \ (c = 0.3, \text{EtOH});$ For a compilation of the ¹H and ¹³C NMR data of the synthetic samples and a comparison with the data of the natural products, see Tables 5 and 6 in the Supporting Information; IR (film): $\tilde{\nu} = 3365$, 3062, 2932, 1744, 1719, 1631, 1371, 1316, 1265, 1249, 1157, 1138, 1073; MS (EI): m/z (%): 513 (11), 467 (14), 349 (10), 241 (13), 223 (42), 131 (44), 111 (13), 83 (100), 55 (28); HRMS (ESI): m/z: calcd for C₄₀H₅₆O₁₄Na [M^+ + Na]: 783.35623, found: 783.35629.

4-Deoxy-ipomoeassin B (38): Prepared analogously from compound **36** (15 mg, 0.0145 mmol) as a colorless syrup (6.1 mg, 56 % overall). $[\alpha]_{D}^{20} = -33$ (c = 0.29, EtOH); ¹H NMR (400 MHz, C₆D₆): $\delta = 7.81$ (d, J = 16.0 Hz, 1 H), 7.06-6.90 (m, 6 H), 6.38 (d, J = 16.0 Hz, 1 H), 5.77 (t, J = 9.8 Hz, 1 H), 5.39 (br. m, 1 H), 4.69 (br. m, 1 H), 4.52-4.46 (m, 2 H), 4.38 (d, J = 7.6 Hz, 1 H), 4.20 (d, J = 11.9 Hz, 1 H), 3.91-3.75 (m, 3 H), 3.58 (m, 1 H), 3.45 (br. s, 1 H), 3.37 (m, 1 H), 3.08 (br. q, J = 6.2 Hz, 1 H), 2.61-2.51 (m, 2 H), 2.39-2.33 (m, 1 H), 1.79-1.56 (m, 30 H), 0.99 (t, J = 6.8 Hz, 3 H); ¹³C NMR (75 MHz, C₆D₆): $\delta = 173.2$, 168.8, 165.4, 146.2, 139.5, 134.4, 130.4, 128.9, 128.5, 128.0, 117.5, 106.5, 100.5, 84.0, 79.0, 76.8, 74.4, 74.2, 73.0, 71.6, 70.2, 67.9, 61.5, 37.4, 34.5, 34.0, 29.3, 27.7, 27.6, 27.0, 25.2, 24.6, 18.7, 16.6, 14.4, 14.1, 12.0 MS (EI): m/z (%): 55 (24), 83 (100), 131 (42), 209 (13), 335 (9), 453 (17), 499 (8), 583 (6), 629 (4); HRMS (ESI): m/z: calcd for C₄₀H₅₈O₁₃Na [M^+ + Na]: 769.37696, found: 769.37677.

Ipomoeassin E (5): Prepared analogously from compound **46** (30 mg, 0.027 mmol) as a colorless syrup which solidifies when kept in the freezer (14 mg, 63 % over both steps). $[\alpha]_D^{25} = -32$ (c = 0.21, EtOH); lit.⁸ $[\alpha]_D^{25} = -24$ (c = 0.2, EtOH); For a compilation of the ¹H and ¹³C NMR data of the synthetic samples and a comparison with the data of the natural products, see Tables 11 and 12 in the Supporting Information; IR (film): $\tilde{\nu} = 3408$, 2933, 2869, 1725, 1636, 1450, 1374, 1309, 1248, 1156, 1073, 768; MS (EI): m/z (%): 655 (5), 571 (7), 525 (7), 407 (9), 281 (40), 239 (11), 221 (19), 192 (11), 131 (58), 110 (10), 83 (100), 55


⁸ S. Cao, R. C. Guza, J. H. Wisse, J. S. Miller, R. Evans, D. G. I. Kingston, J. Nat. Prod. 2005, 68, 487-492.

(20), 43 (19); HRMS (ESI): m/z: calcd for C₄₂H₅₈O₁₆Na [M^+ + Na]: 841.36172, found: 841.36245.

Compound 58: A solution of compound 57 (25.6 mg, 0.025 mmol) in MeCN (1.5 mL) was added to a solution of TASF (68 mg, 0.246 mmol) in MeCN (2 mL) and water (5 µL). After stirring overnight, the solvent was evaporated and the residue purified by flash chromatography (hexanes/EtOAc, 6:1) to give product **58** as a colorless syrup (8.8 mg, 43 %). $[\alpha]_{D}^{20} = -29 \ (c = 0.11, \text{ CHCl}_3); {}^{1}\text{H NMR} \ (400 \text{ MHz}, \text{CDCl}_3): \delta = 7.61 \ (d, J = 16.2 \text{ Hz}, 1 \text{ H}),$ 7.48 - 7.50 (m, 2 H), 7.36 - 7.39 (m, 3 H), 6.84 - 6.90 (m, 1 H), 6.32 (d, J = 16.0 Hz, 1 H),5.23 - 5.32 (m, 2 H), 4.64 (d, J = 7.6 Hz, 1 H), 4.41 (dd, J = 2.8, 12.4 Hz, 1 H), 4.32 (d, J = 1.008.1 Hz, 1 H), 4.20 (dd, J = 7.5, 5.7 Hz, 1 H), 4.11 (dd, J = 12.1, 2.3 Hz, 1 H), 4.01 (dd, J = 12.1, 2.3 Hz, 1 H), 4.1 5.4, 2.2 Hz, 1 H), 3.80 (dd, J = 6.6, 2.0 Hz, 1 H), 3.72 (dt, J = 9.3, 2.7 Hz, 1 H), 3.64 (t, J =7.9 Hz, 2 H), 3.59 (quint., J = 5.4 Hz, 1 H), 2.42 - 2.75 (m, 6 H), 1.75 - 1.78 (m, 3 H), 1.72 - 1.781.74 (m, 3 H), 1.61 – 1.68 (m, 3 H), 1.52 (s, 3 H), 1.39 – 1.51 (m, 4 H), 1.38 (d, J = 6.6 Hz, 3 H) 1.33 (s, 3 H), 1.21 – 1.32 (m, 12 H), 0.89 (t, J = 6.8 Hz, 3 H); ¹³C NMR (150 MHz, CDCl₃): $\delta = 210.2, 171.7, 167.6, 165.4, 146.0, 138.6, 134.0, 130.5, 128.9, 128.3, 127.8, 128.9, 128.3, 127.8, 128.9, 128.3, 127.8, 128.9, 128.3, 128.9,$ 116.8, 110.3, 105.1, 100.0, 82.4, 79.8, 78.5, 76.5, 74.2, 73.9, 72.3, 68.5, 68.3, 65.9, 61.9, 42.0, 37.4, 34.5, 33.2, 32.0, 29.3, 29.0, 28.5, 27.9, 26.2, 24.8, 24.6, 23.7, 22.7, 16.6, 15.3, 14.5, 14.2, 12.1.

Compound 59: A solution of compound **58** (4.3 mg, 0.0052 mmol) and trifluoroacetic acid (3.8 μ L, 0.0511 mmol) in CH₂Cl₂ (1 mL) was stirred for 2 h. After neutralization with NaHCO₃, all volatile materials were removed under reduced pressure and the resulting crude material (8.1 mg) was used in the next step. For analytical purposes, a small sample was purified by preparative HPLC (Shimadzu LC-8A/10A, MeOH/H₂O, 85:15, 10 mL/min, 6.3 MPa), which analyzed as follows: ¹H NMR (400 MHz, C₆D₆): δ = 7.82 (d, *J* = 16.0 Hz, 1 H), 7.07-6.89 (m, 6 H), 6.40 (d, *J* = 16.0 Hz, 1 H), 5.73 (t, *J* = 9.7 Hz, 1 H), 5.43 (t, *J* = 9.4 Hz, 1 H), 4.66-4.63 (m, 1 H), 4.56-4.54 (m, 1 H), 4.39 (d, *J* = 7.6 Hz, 1 H), 4.19 (d, *J* = 12.4 Hz, 1 H), 3.96-3.92 (m, 1 H), 3.88-3.84 (m, 1 H), 3.73 (m, 1 H), 3.64-3.61 (m, 1 H), 3.49 (s, 1 H),

3.43-3.40 (m, 1 H), 3.13-3.08 (m, 1 H), 2.62 (ddd, J = 3.4, 7.7, 16.1 Hz, 1 H), 2.56-2.54 (m, 1 H), 2.43-2.35 (m, 1 H), 2.18-2.11 (m, 1 H), 2.08 (t, J = 6.2 Hz, 2 H), 1.72 (s, 3 H), 1.67-1.27 (m, 24 H), 0.93 (t, J = 6.9 Hz, 3 H); ¹³C NMR (100 MHz, C₆D₆): $\delta = 208.3, 171.5, 168.4, 165.6, 146.1, 139.3, 134.4, 130.3, 128.8, 128.5, 127.9, 117.6, 106.3, 100.6, 83.6, 79.3, 76.6, 74.5, 74.1, 73.1, 71.7, 70.2, 67.8, 61.4, 41.5, 37.4, 35.2, 34.4, 32.3, 29.5, 29.4, 28.6, 25.4, 25.3, 23.7, 23.1, 16.6, 14.3, 14.1, 12.0; IR (film): <math>\tilde{\nu} = 3374, 2929, 2856, 1745, 1718, 1632, 1449, 1380, 1372, 1315, 1250, 1156, 1072, 905, 864, 767, 729, 685; HRMS (ESI):$ *m/z*: calcd for C₄₂H₆₀O₁₄Na [*M*⁺ + Na]: 811.3882, found: 811.3875.

Compound 60: Prepared analogously upon stirring of **58** (62 mg, 0.075 mmol) and trifluoroacetic acid (926 μ L, 12.0 mmol) in CH₂Cl₂ (9 mL) for 2 h. The mixture was neutralized with Et₃N before all volatile materials were evaporated and the residue was purified by flash chromatography (CH₂Cl₂/MeOH, 60:1) to give product **60** as a colorless syrup (32 mg, 54 %). ¹H NMR (600

MHz, C₆D₆): δ = 7.84 (d, *J* = 16.0 Hz, 1 H, H-48), 7.11 (m, 1 H, H-43); 7.01 (m, 1 H, H-50), 6.94 (m, 1 H, H-52), 6.91 (m, 1 H, H-51), 6.49 (d, *J* = 16.0 Hz, 1 H, H-47), 5.79 (t, *J* = 9.5 Hz, 1 H, H-3), 5.59 (dd, *J* = 9.6, 8.1 Hz, 1 H, H-2), 5.44 (d, *J* = 7.9 Hz, 1 H, H-1), 4.96 (d, *J* = 12.2 Hz, 1 H, H-6a), 4.26 (d, *J* = 7.6 Hz, 1 H, H-31), 4.21 (d, *J* = 12.6 Hz, 1 H, H-6b), 4.06 (t, *J* = 9.6 Hz, 1H, H-4), 3.97 (dd, *J* = 7.6, 9.0 Hz, 1H, H-32), 3.66 (m, 1H, H-17), 3.54-3.59 (m, 2 H, H-5, H-33), 3.42 (br. s, 1 H, H-34), 3.02 (m, 1 H, H-35), 2.45 (m, 1 H, H-8a), 2.36 (m, 1 H, H-9a), 2.24 (m, 1 H, H-8b), 2.16 (m, 1 H, H-11a), 2.09 (m, 2 H, H-9b, H-11b), 1.86 (s, 3 H, H-45), 1.26-1.78 (m, 23 H), 1.37 (d, *J* = 6.5 Hz, 3 H, H-44), 1.20 (d, *J* = 6.5 Hz, 3 H, H-36), 0.91 (t, *J* = 6.7 Hz, 3 H, H-22); ¹³C NMR (150 MHz, C₆D₆): δ = 209.6 (C-10), 173.3 (C-7), 167.3 (C-41), 166.9 (C-46), 145.9 (C-48), 138.5 (C-43), 134.7 (C-49), 130.1 (C-52), 128.9 (C-51), 128.8 (C-42), 127.7 (C-50), 118.2 (C-47), 101.6 (C-31), 101.5 (C-1), 80.1 (C-17), 78.9 (C-32), 75.8 (C-3), 75.4 (C-5), 74.9 (C-33), 73.1 (C-2), 72.2 (C-34), 70.2 (C-35), 68.6 (C-4), 63.1 (C-6), 42.1 (C-11), 37.1 (C-9), 35.4 (C-16), 34.3 (C-18), 29.1 (C-8), 28.7 (C-13), 25.4 (C-15), 24.6 (C-19), 24.1 (C-12), 23.13 (C-20), 23.08 (C-14), 20.6 (C-21), 16.5 (C-36), 14.4 (C-22), 14.2 (C-44), 12.4 (C-45).

Orthoester rearrangements

Ipomoeassin A (1): Camphersulfonic acid (1.0 mg) was added to a solution of ipomoeassin B (2) (2.4 mg, 0.00315 mmol) in triethyl orthoacetate (0.10 mL) and the mixture was stirred for 1 h before aq. acetic acid (80 % *w/w*, 0.10 mL) was introduced and stirring continued for 3 h. Evaporation of the solvent and flash column chromatography of the crude material (CH₂Cl₂/MeOH, 30/1) gave ipomoeassin A as a colorless oil (2.4 mg, 95 %). For a compilation of the ¹H and ¹³C NMR data of the synthetic samples and a comparison with the data of the natural products, see Tables 3 and 4 in the Supporting Information. $[\alpha]_D^{25} = -22$ (*c* = 0.1, EtOH); lit.⁸ $[\alpha]_D^{25} = -36$ (*c* = 0.2, EtOH); MS (EI): *m/z* (%): 55 (22), 83 (99), 131 (100), 192 (13), 223 (29), 349 (14), 597 (15); HRMS (ESI): *m/z*: calcd for C₄₂H₅₈O₁₅Na [*M*⁺ + Na]: 825.36680, found: 825.36615.

Ipomoeassin C (3): Prepared analogously starting with compound **51** (29.1 mg, 0.0368 mmol) as a colorless oil (5.9 mg, 30 % overall). For a compilation of the ¹H and ¹³C NMR data of the synthetic samples and a comparison with the data of the natural products, see Tables 7 and 8 in the Supporting Information. $[\alpha]_D^{25} = -20$ (c = 0.3, EtOH); lit.⁸ $[\alpha]_D^{25} = -29$ (c = 0.4, EtOH); MS (EI): m/z (rel. intensity): 55 (18) 131 (100), 149 (6), 245 (6), 375 (20) 417 (7); HRMS (ESI): m/z: calcd for C₄₂H₅₈O₁₆Na [M^+ + Na]: 841.36171, found: 841.36128.

Ipomoeassin D (4): Prepared analogously from ipomoeassin E (**5**) (13 mg, 0.0159 mmol) as a colorless oil (12.3 mg, 90 %). For a compilation of the ¹H and ¹³C NMR data of the synthetic samples and a comparison with the data of the natural products, see Tables 9 and 10 in the Supporting Information. $[\alpha]_D^{25} = -30$ (c = 0.2, EtOH); lit.⁸ $[\alpha]_D^{25} = -35$ (c = 0.2, EtOH); MS (EI): m/z (%): 83 (72), 131 (100)192 (12), 281 (26), 407 (11), 655 (6), 701 (4); HRMS (ESI): m/z: calcd for C₄₄H₆₀O₁₇Na [M^+ + Na]. 883.37227, found: 883.37305.

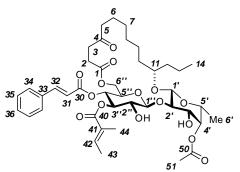
⁸ S. Cao, R. C. Guza, J. H. Wisse, J. S. Miller, R. Evans, D. G. I. Kingston, J. Nat. Prod. 2005, 68, 487-492.

Ipomoeassin F (6): Prepared analogously as a colorless oil (4.8 mg, 96 %, overall from 58). $[\alpha]_{D}^{20} = -33$ (c = 0.16, EtOH); lit.⁹ $[\alpha]_{D}^{22} = -54$ (c = 0.16, EtOH); ¹H NMR (400 MHz, C₆D₆): δ = 7.81 (d, J = 16.0 Hz, 1 H), 7.06-6.90 (m, 4 H), 6.38 (d, J = 16.0 Hz, 1 H), 5.69 (t, J = 9.7 Hz, 1 H), 5.44 (t, J = 9.5 Hz, 1 H), 5.18-5.17 (m, 1 H), 4.70-4.66 (m, 1 H), 4.58 (d, J = 7.7Hz, 1 H), 4.41 (d, J = 7.6 Hz, 1 H), 4.14 (d, J = 12.4 Hz, 1 H), 3.97-3.87 (m, 2 H), 3.78-3.69 (m, 2 H), 3.36 (d, J = 9.7 Hz, 1 H), 3.18-3.12 (m, 1 H), 2.66 (ddd, J = 16.1, 7.7, 3.4 Hz, 1 H),2.56-2.48 (m, 1 H), 2.44-2.36 (m, 1 H), 2.20-2.12 (m, 1 H), 2.08 (t, J = 6.0 Hz, 2 H), 1.86 (s, 3 H), 1.72 (s, 3 H), 1.67-1.17 (m, 22 H), 1.26 (d, J = 17.0 Hz, 3 H), 1.12 (d, J = 6.4 Hz, 3 H), 0.92 (t, J = 6.9 Hz, 3 H); ¹H NMR (600 MHz, CDCl₃): $\delta = 7.61$ (d, J = 16.1 Hz, 1 H), 7.48 (m, 2 H), 7.37 (m, 1 H), 7.36 (m, 2 H), 6.87 (qq, J = 7.0, 1.4 Hz, 1 H), 6.32 (d, J = 16.0 Hz, 1 H), 5.29 (dd, J = 9.8, 9.8 Hz, 1 H), 5.12 (dd, J = 3.7, 0.9 Hz, 1 H), 5.11 (dd, J = 9.5, 9.5 Hz, 1 H), 4.59 (d, J = 7.8 Hz, 1 H), 4.44 (dd, J = 12.4, 3.5 Hz, 1 H), 4.38 (d, J = 7.7 Hz, 1 H), 4.12 (dd, J = 12.4, 2.4 Hz, 1 H), 3.89 (dd, J = 9.6, 3.7 Hz, 1 H), 3.72 (ddd, J = 9.8, 3.5, 2.4 Hz, 1 H)H), 3.63 - 3.68 (m, 3 H), 3.61 (t, J = 5.7 Hz, 1 H), 2.77 (ddd, J = 17.6, 9.1, 4.1 Hz, 1 H), 2.71(ddd, J = 17.2, 7.3, 3.8 Hz, 1 H), 2.63 (ddd, J = 16.6, 7.3, 4.1 Hz, 1 H), 2.55 (ddd, J = 16.3, 1.4 Hz, 1 H), 2.55 (ddd, J = 16.3, 1.4 Hz, 19.0, 3.9 Hz, 1 H), 2.47 (ddd, J = 16.0, 8.1, 4.6 Hz, 1 H), 2.41 (ddd, J = 16.0, 9.0, 5.6 Hz, 1 H), 2.16 (s, 3 H), 1.70 - 1.74 (m, 6 H), 1.63 (m, 4 H), 1.49 (m, 4 H), 1.26 (m, 13 H), 1.16 (d, J =6.4 Hz, 3 H), 0.86 (t, J = 7.2 Hz, 3 H); ¹³C NMR (150 MHz, CDCl₃): $\delta = 210.1$, 171.9, 171.7, 168.9, 165.4, 146.2, 139.9, 133.9, 130.7, 128.9, 128.3, 127.5, 116.6, 105.7, 100.1, 82.8, 79.7, 75.9, 73.9, 72.7, 72.6, 72.5, 68.8, 67.4, 61.7, 41.9, 37.6, 34.3, 33.0, 31.9, 29.1, 29.0, 28.3, 24.6, 24.5, 23.5, 22.7, 21.0, 16.4, 14.7, 14.1, 12.0; ¹³C NMR (100 MHz, C₆D₆): δ = 208.4, 171.7, 170.9, 168.5, 165.6, 146.3, 139.2, 134.6, 130.7, 128.8, 128.5, 127.9, 117.7, 106.6, 100.8, 84.0, 79.4, 76.5, 74.8, 73.0, 72.8, 72.8, 69.0, 67.8, 61.5, 41.6, 37.4, 35.4, 34.3, 32.3, 29.7, 29.4, 28.7, 25.5, 25.2, 23.7, 23.1, 20.5, 16.6, 14.3, 14.1, 12.0; IR (film): $\tilde{\nu} = 3418$, 2930, 2857, 1721, 1636, 1450, 1379, 1310, 1248, 1155, 1073; HRMS (ESI): m/z: calcd for $C_{44}H_{62}O_{15}Na [M^+ + Na]: 853.3988$, found: 853.3981.

⁹ S. Cao, A. Norris, J. H. Wisse, J. S. Miller, R. Evans, D. G. I. Kingston, Nat. Prod. Res. 2007, 21, 872-876.

X-ray crystal structure analysis of compound 17a: C₃₀ H₄₄ O₁₁, $M_r = 580.65$ g·mol⁻¹, colorless block, crystal size 0.26 x 0.08 x 0.02 mm, monoclinic, space group *P2₁*, *a* = 17.1161(5) Å, *b* = 5.5117(2) Å, *c* = 8.3107(3) Å, β = 117.278(1)°, *V* = 1476.85(8) Å³, *T* = 100 K, *Z* = 2, $D_{calc} = 1.306$ g·cm³, λ = 0.71073 Å, μ (*Mo-K_a*) = 0.099 mm⁻¹, Multi-Scan absorption correction (T_{min} = 0.76, T_{max} = 0.86), Nonius KappaCCD diffractometer, 3.43 < θ < 33.21, 39545 measured reflections, 11292 independent reflections, 7390 reflections with *I* > 2 σ (*I*), Structure solved by direct methods and refined by full-matrix least-squares against *F*² to *R*₁ = 0.056 [*I* > 2 σ (*I*)], *wR*₂ = 0.103, absolute structure parameter = -0.2(6), 378 parameters, H atoms riding, *S* = 1.009, residual electron density +0.3 / -0.2 e Å⁻³.

CCDC-732392 contains the supplementary crystallographic data of this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/data request/cif.

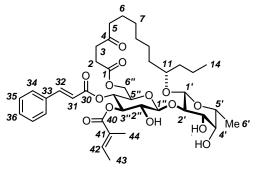

Bioassays

Cell culture: The L-929 cell line and the HeLa cells (ATCC Nr. CCL-2) were obtained from the German Collection of Microorganisms and Cell Cultures (DSMZ) and were cultured under conditions recommended by the depositor. Cell culture reagents were purchased from Sigma-Aldrich and plastic ware was obtained from Sarstedt AG & Co.

Cytotoxicity assays: L-929: Cells were seeded at $6 \cdot 10^3$ cells per well of 96-well plates in 180 μ L complete medium and directly treated with varying concentrations of ipomoeassins diluted in methanol. Each ipomoeassin was tested in duplicate as well as the internal methanol control. After 5 d incubation, 20 μ L of 5 mg mL⁻¹ MTT (thiazolyl blue tetrazolium bromide) in PBS was added per well and it was further incubated for 2 h at 37 °C. The medium was then discarded and cells were washed with 100 μ L PBS before adding 100 μ L 2-propanol/10 M HCl (250:1) in order to dissolve formazan granules. The absorbance at 570 nm was measured using a microplate reader (EL808, Bio-Tek Instruments Inc.), and cell viability was expressed as percentage relative to the respective methanol control.

HeLa: Cells were seeded at $5 \cdot 10^3$ cells per well on 96-well plates in 100 µL complete medium. Cells were incubated for 18-20 h at 37 °C / 5 % CO₂ before the medium was exchanged for fresh medium containing the appropriate concentration of the compound to be tested. Compound stock solutions were prepared in DMSO at 10 mM. After incubation for 3 d at 37 °C / 5 % CO₂, 10 µL of a WST-1 ready-to-use solution (Roche) was added and the plate was kept at 37 °C for at least 30 min. Absorption was measured at 450 nm using an automatic plate reader (Tecan). Each measurement was repeated independently four times and cell viability was expressed as percentage of the mean value relative to the positive control; WST-1 = (4-[3-(4-Iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzene disulfonate).

Cell cycle analysis: 10^5 cells were harvested by centrifugation, washed with ice-cooled PBS, and fixed overnight with cold (-20 °C) 80 % ethanol. After fixation, ethanol was removed completely and the cell pellet was resuspended in a PBS solution containing 5 µg mL⁻¹ propidium iodide and 0.1 mg mL⁻¹ RNase A. The suspension was incubated for 30 min at 37 °C and samples were analyzed by a flowcytometric system (EasyCyte Plus, Guava Technologies). In total, 5000 viable cells were acquired per sample and cell cycle histograms were generated after exclusion of small cell debris using a Watson algorithm of FlowJo 7.2.5 software (TreeStar Inc.).

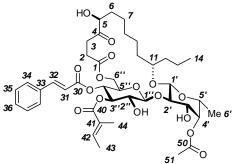

Table 3. Comparison of the published ¹H NMR data (C_6D_6) of Ipomoeassin A (1) (500 MHz) with those of the synthetic sample (600 MHz). Numbering scheme as shown in the insert.^[a]

Position	Ipomoeassin A (J in Hz)	Synthetic Sample (<i>J</i> in Hz)
2	2.40 ddd (17.4, 9.4, 3.4)	2.38 ddd (17.4, 9.8, 3.4)
	2.14 ddd (17.4, 7.7, 3.5)	2.14 ddd (17.4, 7.5, 3.4)
3	2.65 ddd (16.1, 7.7, 3.4)	2.64 ddd (16.3, 7.5, 3.4)
	2.52 ddd (16.1, 9.4, 3.5)	2.50 ddd (16.3, 9.8, 3.4)
5	2.07 t (6.0)	2.06 t (6.0)
11	3.72 m	3.72 m
14	0.95 t (7.1)	0.95 t (6.9)
1'	4.40 d (7.7)	4.38 d (7.7)
2'	3.96 dd (9.5, 3.7)	3.86 app. t (9.2)
3'	3.72 dd (9.5, 3.7)	3.68 dd (9.6, 3.6)
4'	5.15 dd (3.7, 0.5)	5.11 brd (3.5)
5'	3.10 qd (6.4, 0.5)	3.09 brq (6.4)
6'	1.10 d (6.4)	1.09 d (6.4)
1"	4.52 d (7.9)	4.48 d (8.0)
2"	3.91 dd (9.7, 7.9)	3.92 dd (9.6, 7.8)
3"	5.39 t (9.7)	5.31 t (9.4)
4"	5.69 t (9.7)	5.67 t (9.8)
5"	3.24 ddd (9.7, 3.2, 1.6)	3.23 brd (10.3)
6"	4.66 dd (12.6, 3.2)	4.63 dd (12.6, 3.1)
	4.11 dd (12.6, 1.6)	4.11 brd (12.6)
31	6.39 d (15.9)	6.38 d (16.0)
32	7.81 d (15.9)	7.81 d (16.0)
34	6.89-7.07	6.90-7.05
35	6.89-7.07	6.90-7.05
36	6.89-7.07	6.90-7.05
42	6.95 m	6.96 m
43	1.23 d (7.1)	1.25 d (7.0)
44	1.68 brs	1.69 brs
51	1.82 s	1.82 s

[a] The protons H-6 to H-10, H-12 and H-13 appear between 1.96-1.36 ppm as a multiplet.

Position	Ipomoeassin A	Synthetic sample
1	171.5	171.5
2	37.3	37.4
3	29.7	29.6
4	208.4	208.2
5	41.6	41.6
6	23.8	23.7
7	28.7	28.7
8	29.4	29.4
9	25.5	25.5
10	34.3	34.3
11	79.0	78.9
12	37.6	37.6
13	18.7	18.7
14	14.4	14.4
1'	100.8	100.7
2'	84.0	84.0
3'	72.7	72.8
4'	72.9	73.0
5'	69.0	69.0
6'	14.1	14.1
1"	106.6	106.5
2"	74.8	74.8
3"	76.4	76.7
4"	67.8	67.7
5"	73.0	73.0
6"	61.5	61.4
30	165.6	165.6
31	117.6	117.6
32	146.1	146.1
33	134.5	134.4
34	128.5	128.5
35	128.9	128.9
36	130.4	130.4
40	168.5	168.7
41	128.0	128.0
42	139.2	139.4
43	16.6	16.5
44	12.1	12.0
50	171.0	170.8
51	20.5	20.4

Table 4. Comparison of the ¹³C NMR data (C_6D_6) of Ipomoeassin A (1) (125 MHz) with those of the synthetic sample (150 MHz).

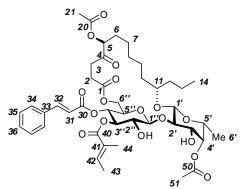

Table 5. Comparison of the published ¹H NMR data (C_6D_6) of Ipomoeassin B (2) (500 MHz) with those of the synthetic sample (300 MHz). Numbering scheme as shown in the insert.^[a]

Position	Ipomoeassin B (J in Hz)	Synthetic sample (<i>J</i> in Hz)
2	2.38 ddd (17.4, 9.4, 3.4)	2.37 ddd (17.1, 9.3, 3.5)
	2.13 ddd (17.4, 7.7, 3.5)	2.15 ddd (17.1, 7.6, 3.3)
3	2.62 ddd (16.1, 7.7, 3.4)	2.63 ddd (16.1, 7.7, 3.3)
	2.50 ddd (16.1, 9.4, 3.5)	2.49 ddd (16.1, 9.2, 3.4)
5	2.07 t (6.2)	2.08 t (6.2)
11	3.71 m	3.73 m
14	0.96 t (7.1)	0.97 t (7.0)
1'	4.38 d (7.6)	4.39 d (7.6)
2'	3.88 dd (9.5, 7.6)	3.88 dd (9.8, 7.5)
3'	3.65 dd (9.5, 3.3)	3.65 dd (9.6, 3.3)
4'	3.53 brs	3.53 br s
5'	3.11 brq (6.4)	3.11 br q (6.3)
6'	1.29 d (6.4)	1.29 d (6.4)
1"	4.59 d (7.8)	4.61 d (7.8)
2"	3.95 dd (9.7, 7.8)	3.95 dd (9.6, 8.0)
3"	5.50 t (9.7)	5.51 t (9.6)
4"	5.72 t (9.7)	5.73 t (9.6)
5"	3.44 brd (9.7)	3.46 brm
6"	4.66 dd (12.6, 2.1)	4.64 m
	4.16 brd (12.6)	4.18 br d (12.4)
31	6.40 d (16.1)	6.41 d (16.0)
32	7.81 d (16.1)	7.82 d (16.0)
34	6.88-7.07	6.88-7.08
35	6.88-7.07	6.88-7.08
36	6.88-7.07	6.88-7.08
42	6.95 m	6.94 m
43	1.27 d (7.1)	1.29 d (7.1)
44	1.72 brs	1.73 brs

[a] The protons H-6 to H-10, H-12 and H-13 appear between δ 1.73-1.26 as a multiplet.

Position	Ipomoeassin B	Synthetic Sample	
1	171.5	171.6	
2	37.4	37.4	
3	29.5	29.6	
4	208.3	208.5	
5	41.5	41.6	
6	23.6	23.7	
7	28.6	28.7	
8	29.3	29.4	
9	25.4	25.5	
10	34.3	34.4	
11	78.8	78.9	
12	37.4	37.4	
13	18.8	18.8	
14	14.3	14.4	
1'	100.6	100.6	
2'	83.7	83.7	
3'	74.2	74.2	
4'	71.6	71.7	
5'	70.2	70.2	
6'	14.0	14.1	
1"	106.4	106.5	
2"	74.6	74.6	
3"	76.3	76.4	
4"	67.8	67.9	
5"	73.0	73.1	
6"	61.4	61.5	
30	165.5	165.6	
31	117.6	117.7	
32	146.0	146.1	
33	134.4	134.5	
34	128.4	128.5	
35	128.8	128.9	
36	130.3	130.4	
40	168.5	168.6	
41	128.0	127.9	
42	139.1	139.2	
43	16.6	16.6	
44	12.0	12.1	

Table 6. Comparison of the published ¹³C NMR data (C_6D_6) of Ipomoeassin B (2) (100 MHz) with those of the synthetic samples (150 MHz).

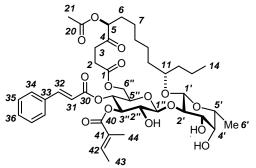

Table 7. Comparison of the published ¹H NMR data (C_6D_6) of Ipomoeassin C (3) (500 MHz) with those of the synthetic sample (400 MHz). Numbering scheme as shown in the insert.^[a]

Position	Ipomoeassin C (J in Hz)	Synthetic sample (J in Hz)
2	2.65 ddd (17.9, 9.1, 4.2)	2.67 ddd (18.0, 9.2, 4.4)
	1.80 ddd (17.9, 7.8, 4.4)	1.77 m
3	3.01 ddd (16.4, 9.1, 4.4)	3.01 ddd (16.4, 9.2, 4.4)
	2.21 ddd (16.4, 7.8, 4.4)	2.24 ddt (16.4, 7.8, 4.4)
5	3.96 m	3.96 m
11	3.66 m	3.66 m
14	0.96 t (6.9)	0.97 t (6.8)
1'	4.32 d (7.6)	4.33 d (7.6)
2'	3.90 dd (9.7, 7.6)	3.89 appt (9.6)
3'	3.66 dd (9.7, 3.4)	3.66 m
4'	5.12 brd (3.4)	5.11 brm
5'	3.11 brq (6.4)	3.13 brq (6.4)
6'	1.09 d (6.4)	1.10 d (6.4)
1"	4.54 d (7.8)	4.53 brd (7.4)
2"	3.83 dd (9.7, 7.8)	3.83 appt (9.2)
3"	5.41 t (9.7)	5.39 brt (9.6)
4"	5.72 t (9.7)	5.71 t (9.6)
5"	3.26 brd (9.7)	3.27 m
6"	4.37 dd (12.4, 1.6)	4.37 brd (12.4)
	4.26 dd (12.4, 0.9)	4.25 brd (12.4)
31	6.38 d (16.0)	6.38 d (16.0)
32	7.81 d (16.0)	7.81 d (16.0)
34	6.88-7.03	6.91-7.07
35	6.88-7.03	6.91-7.07
36	6.88-7.03	6.91-7.07
42	6.95 m	6.94 m
43	1.27 d (7.1)	1.29 d (7.0)
44	1.71 brs	1.72 brs
51	1.84 s	1.84 s

[a] The protons H 6-10, H-12 and H-13 appear between 1.80-1.30 ppm as a multiplet.

Position	Ipomoeassin C	Synthetic sample
1	171.6	171.6
2	33.0	33.0
3	28.3	28.3
4	210.7	210.6
5	76.3	76.4
6	32.7	32.8
7	22.7	22.7
8	29.9	29.9
9	25.1	25.1
10	34.1	34.2
11	78.8	78.9
12	37.6	37.7
13	18.8	18.8
14	14.4	14.4
1'	100.7	100.8
2'	83.7	83.8
3'	72.7	72.8
4'	72.6	72.7
5'	68.9	69.0
6'	14.1	14.1
1"	106.4	106.4
2"	74.7	74.8
3"	76.4	76.4
4"	67.9	67.9
5"	72.8	72.8
6"	61.6	61.6
30	165.4	165.4
31	117.5	117.6
32	146.2	146.2
33	134.4	134.5
34	128.5	128.5
35	128.9	128.9
36	130.4	130.4
40	168.5	168.6
41	128.0	128.0
42	139.3	139.3
43	16.5	16.5
44	12.1	12.0
50	171.0	170.9
51	20.5	20.5

Table 8. Comparison of the ¹³C NMR data (C_6D_6) of Ipomoeassin C (**3**) (125 MHz) with those of the synthetic sample (75 MHz).


Table 9. Comparison of the published ¹H NMR data (C_6D_6) of Ipomoeassin D (4) (500 MHz) with those of the synthetic sample (400 MHz). Numbering scheme as shown in the insert.^[a]

Position	Ipomoeassin D (J in Hz)	Synthetic Sample (<i>J</i> in Hz)
2	2.57 ddd (18.1, 9.2, 2.8)	2.59 ddd (18.0, 9.3, 2.9)
	2.38 ddd (18.1, 7.8, 3.4,)	2.40 m
3	2.83 ddd (16.3, 9.2, 3.4)	2.84 ddd (16.5, 9.2, 3.6)
	2.43 ddd (16.3, 7.8, 2.8)	2.42 brm
5	5.05 dd (6.2, 3.9)	5.07 dd (6.3, 3.8)
11	3.70 m	3.71 m
14	0.95 t (7.1)	0.96 t (7.0)
1'	4.29 d (7.6)	4.31 d (7.9)
2'	3.88 dd (9.5, 7.6)	3.88 dd (9.6, 7.8)
3'	3.62 dd (9.5, 3.7)	3.64 brm
4'	5.09 brd (3.7)	5.10 brs
5'	3.06 brq (6.4)	3.09 brq (6.2)
6'	1.08 d (6.4)	1.09 d (6.4)
1"	4.51 d (7.8)	4.50 brm
2"	3.79 dd (9.7, 7.8)	3.80 brm
3"	5.39 t (9.7)	5.39 brm
4"	5.69 t (9.7)	5.69 t (9.8)
5"	3.29 brd (9.7)	3.29 brm
6"	4.51 brd (11.5)	4.50 br d (11.7)
	4.19 brd (11.5)	4.20 brd (11.7)
21	1.70 s	1.72 s
31	6.37 d (15.8)	6.38 d (16.0)
32	7.81 d (15.8)	7.81 d (16.0)
34	6.88-7.03	6.91-7.08
35	6.88-7.03	6.91-7.08
36	6.88-7.03	6.91-7.08
42	6.95 m	6.96 m
43	1.26 d (7.1)	1.28 brm
44	1.70 brs	1.72 s
51	1.82 s	1.82 s

[a] The protons H-6 to H-10, H-12 and H-13 appear between 1.97-1.33 ppm as a multiplet.

Position	Ipomoeassin D	Synthetic sample
1	171.3	171.3
2	34.0	34.1
3	28.3	28.3
4	205.7	205.7
5	78.4	78.5
6	30.3	30.4
7	24.0	24.0
8	30.6	30.6
9	25.2	25.2
10	34.0	34.1
11	78.5	78.5
12	37.7	37.7
13	18.9	18.9
14	14.4	14.4
1'	100.6	100.7
2'	83.9	83.9
3'	72.8	72.9
4'	72.7	72.7
5'	68.9	68.9
6'	14.1	14.1
1"	106.6	106.6
2"	75.0	75.0
3"	76.6	76.4
4"	67.6	67.8
5"	72.9	72.9
6"	61.2	61.3
50	170.9	171.0
51	20.4	20.5
20	169.8	169.8
21	20.3	20.3
40	168.8	168.6
41	128.0	128.0
42	139.4	139.2
43	16.5	16.5
44	12.0	12.1
30	165.5	165.5
31	117.6	117.6
32	146.2	146.2
33	134.4	134.5
34	128.4	128.3
35	128.8	128.9
36	130.4	130.4

Table 10. Comparison of the ¹³C NMR data (C_6D_6) of Ipomoeassin D (4) (125 MHz) with those of the synthetic sample (75 MHz).

Table 11. Comparison of the ¹H NMR data (C_6D_6) reported for Ipomoeassin E (**5**) (500 MHz) with those of the synthetic material (400 MHz). Numbering scheme as shown in the insert.^[a, b]

Position	Ipomoeassin E (J in Hz)	Synthetic sample $(J \text{ in } Hz)$
2	2.55 ddd (18.1, 9.2, 2.8)	2.59 ddd (18.0, 9.2, 3.1)
	2.34 ddd (18.1, 7.8, 3.4)	2.46-2.36 m
3	2.81 ddd (16.3, 9.2, 3.4)	2.82 ddd (16.5, 9.2, 3.5)
	2.39 ddd (16.3, 7.8, 2.8)	2.46-2.36 m
5	5.04 dd (6.2, 3.9)	5.07 dd (6.1, 3.9)
11	3.71 m	3.74 brm
14	0.97 t (6.9)	0.99 t (7.0)
1'	4.28 d (7.6)	4.32 d (7.6)
2'	3.80 dd (9.5, 7.6)	3.82 appt (9.4)
3'	3.55 dd (9.5, 3.7)	3.59 dd (9.3, 3.2)
4'	3.44 brs	3.48 brs
5'	3.02 brq (6.4)	3.09 brq (6.4)
6'	1.25 d (6.4)	1.28 d (6.6)
1"	4.50 d (7.8)	4.55 d (8.0)
2"	3.81 dd (9.7, 7.8)	3.84 appt (9.5)
3"	5.38 t (9.7)	5.43 t (9.5)
4"	5.70 t (9.7)	5.71 t (9.7)
5"	3.36 brd (9.7)	3.43 brd (9.8)
6"	4.51 dd (11.0, 2.0)	4.52 dd (11.4, 2.2)
	4.20 brd (11.0)	4.24 brd (11.5)
21	1.67 brs	1.73 brs
31	6.40 d (16.1)	6.41 d (16.0)
32	7.81 d (16.1)	7.82 d (16.0)
34	6.88-7.03	6.91-7.09
35	6.88-7.03	6.91-7.09
36	6.88-7.03	6.91-7.09
42	6.95 m	6.95 m
43	1.25 d (7.1)	1.30 d (7.3)
44	1.67 brs	1.73 brs

[a] The chemical shifts depend on the concentration of the sample and the dryness of the C_6D_6 used; the data compiled in this Table were recorded using 3 mg of compound **2** in 0.6 mL of freshly distilled (CaH₂) C_6D_6 . ^{*b*} The protons at positions H-6 to H-10, H-12 and H-13 appear between 1.96-1.36 ppm as a multiplet.

Position	Ipomoeassin E	Synthetic sample
1	171.4	171.4
2	34.0	34.1
3	28.3	28.3
4	205.8	205.7
5	78.2	78.2
6	30.3	30.3
7	24.0	24.0
8	30.5	30.5
9	25.2	25.2
10	34.0	34.1
11	78.5	78.5
12	37.7	37.7
13	18.9	19.0
14	14.4	14.4
1'	100.5	100.4
2'	84.2	84.3
3'	74.0	74.0
4'	71.6	71.6
5'	70.0	70.0
6'	14.1	14.1
1"	106.7	106.7
2"	74.9	74.9
3"	76.6	76.7
4"	67.7	67.7
5"	72.9	73.0
6"	61.2	61.3
20	169.8	169.8
21	20.3	20.3
30	165.5	165.5
31	117.5	117.6
32	146.2	146.2
33	134.4	134.5
34	128.3	128.2
35	128.5	128.3
36	130.4	130.4
40	168.9	168.9
41	128.0	128.0
42	139.6	139.5
43	16.6	16.5
44	12.0	12.0

Table 12. Comparison of the ¹³C NMR data (C_6D_6) reported for Ipomoeassin E (5) (125 MHz) with those of the synthetic sample (75 MHz).